רבי ירמיה
|
Read other articles:
Halaman ini berisi artikel tentang artis sebagai profesi dalam dunia seni. Untuk profesi di dunia film dan hiburan, lihat pemeran. Seniman Seniman atau artis (Inggris: artist) adalah istilah subyektif yang merujuk kepada seseorang yang kreatif, inovatif, atau mahir dalam bidang seni. Penggunaan yang paling kerap adalah untuk menyebut orang-orang yang menciptakan karya seni, seperti lukisan, patung, seni peran, seni tari, sastra, film dan musik. Seniman menggunakan imajinasi dan bakatnya u...
Institut Informatika dan Bisnis DarmajayaMotoDarmajaya The BestDidirikan5 Juni 1997KetuaDR. Andi Desfiandi, S.E., M.ARektorDR. (Can) Ir. H. Firmansyah Yunialfi Alfian, MBA., MScJumlah mahasiswa> 5.658 MahasiswaLokasiBandar Lampung, Lampung, IndonesiaWarnaBiru DongkerSitus webhttp://www.darmajaya.ac.id Institut Informatika dan Bisnis Darmajaya (disingkat IIB Darmajaya) merupakan salah satu perguruan tinggi swasta yang ada di Kota Bandar Lampung, Provinsi Lampung. Nama DARMAJAYA, merupakan a...
Об экономическом термине см. Первородный грех (экономика). ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Ран�...
Australian politician (born 1967) The HonourableDarren ChesterMPMember of the Australian Parliamentfor GippslandIncumbentAssumed office 28 June 2008Preceded byPeter McGauranMinister for Veterans' Affairs & Minister for Defence PersonnelIn office5 March 2018 (2018-03-05) – 2 July 2021 (2021-07-02)Prime MinisterMalcolm TurnbullScott MorrisonPreceded byMichael McCormackSucceeded byAndrew GeeMinister for Regional DevelopmentIn office27 October 2017...
French figure skater Charles SabouretSabouret skating with Yvonne Lacroix (1907)Personal informationFull nameCharles Joseph Marie SabouretNationalityFrenchBorn(1877-06-08)8 June 1877Périgueux, FranceSportSportFigure skating Charles Sabouret (8 June 1884 – 18 April 1967) was a French figure skater. He participated in the Olympic Games in Antwerp 1920 (seventh place) and Chamonix 1924 (ninth place) in Pair Skating along with Simone Sabouret.[1] References ^ Charles Sabouret. Oly...
Police service of Morocco Direction Générale de la Sûreté Nationaleاالمديرية العامة للأمن الوطنيⵜⴰⵎⵀⵍⴰ ⵜⴰⵎⴰⵜⴰⵢⵜ ⵏ ⵜⵏⴼⵔⵓⵜ ⵜⴰⵏⴰⵎⵓⵔⵜCommon nameSûreté NationaleMottoالأمن الوطني... فخورون بخدمتكمNational Security... proud to serve youAgency overviewFormed16 May 1956[1]Employees79830 (2023)Annual budget13 billion dirham (2022)[2]Jurisdictional structureOperations j...
US Space Force base in Aurora, Colorado Buckley Space Force BaseAurora, Colorado in the United StatesRadomes protecting satellite dishes and other space operations equipment at Buckley Space Force BaseEmblem of Space Base Delta 2Buckley SFBShow map of ColoradoBuckley SFBShow map of the United StatesCoordinates39°42′06″N 104°45′06″W / 39.70167°N 104.75167°W / 39.70167; -104.75167 (Buckley SFB)TypeUS Space Force BaseSite informationOwnerDepartmen...
Cette page concerne l'année 969 du calendrier julien. Pour l'année 969 av. J.-C., voir 969 av. J.-C. Chronologies 28 octobre : prise d’Antioche. Chronique de Jean Skylitzès, manuscrit de Madrid, XIIe siècle.Données clés 966 967 968 969 970 971 972Décennies :930 940 950 960 970 980 990Siècles :VIIIe IXe Xe XIe XIIeMillénaires :-IIe -Ier Ier IIe IIIe Calendriers Romain Chinois Grégorien Julien Hébraïque Hind...
Cette page énumère les photographes qui ont façonné l'image du groupe rock britannique The Beatles. Les Beatles à l'aéroport de Wellington en 1964 Historique Au cours de leur carrière, d'innombrables photographies des Beatles ont été prises soit par des fans[n 1], des journalistes, des gens de leur entourage ou des photographes professionnels tels David Magnus[1], John Loengard[2], Bob Gomel (en)[3] ou Leslie Bryce, ce dernier attitré au fanzine The Beatles Book Monthly[4]. Rin...
1st Michigan Infantry Regiment may refer to: 1st Michigan Infantry Regiment (3 Months), existed in 1861 1st Michigan Infantry Regiment (3 years), existed 1861-1865 1st Michigan Sharpshooters Regiment, existed 1863-1865 1st Michigan Colored Volunteer Infantry Regiment, existed 1864-1865 See also 1st Michigan Cavalry Regiment 1st Michigan Engineers and Mechanics Regiment List of Michigan Civil War units Topics referred to by the same termThis disambiguation page lists articles about military un...
Yakumo 八雲町KotaprajaBalai Kota Yakumo BenderaEmblemLokasi Yakumo di Hokkaido (Subprefektur Oshima)YakumoLokasi di JepangKoordinat: 42°15′N 140°16′E / 42.250°N 140.267°E / 42.250; 140.267Koordinat: 42°15′N 140°16′E / 42.250°N 140.267°E / 42.250; 140.267NegaraJepangWilayahHokkaidoPrefektur Hokkaido (Subprefektur Oshima)DistrikFutamiPemerintahan • WalikotaKatsunori IwamuraLuas • Total956,08 km2...
American colonial meeting against the British Stamp Act Stamp Act Congress/Continental CongressPart of the American Revolution1d Stamp Act of 1765 proofTypeTypeUnicameral HistoryEstablishedOctober 7, 1765 (1765-10-07)DisbandedOctober 25, 1765 (1765-10-25)Preceded byAlbany CongressSucceeded by1st Continental CongressLeadershipChairman of the CongressTimothy Ruggles Seats27Meeting placeCity Hall (later Federal Hall, since demolished)New York, New York Thi...
Pour les articles homonymes, voir Pacha et Bashaw. Le mot pacha (paşa, mot turc probablement issu du persan padichah[1], parfois importé en français dans sa forme allemande pascha ou anglaise bashaw) était, dans l'Empire ottoman et au Maroc un titre de noblesse de haut rang accordé notamment aux gouverneurs des provinces. Dans les États chrétiens tributaires du Sultan ottoman, l'équivalent d'un pacha est hospodar (« souverain » ou « seigneur »). Rôle dans le ...
Type Command for U.S. Naval air forces operating primarily in the Pacific This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Commander, Naval Air Forces – news · newspapers · books · scholar · JSTOR (May 2010) Commander, Naval Air Forces andCommander, Naval Air Force PacificCNAF (COMNAVAIRFOR) andCNAP...
Battle in 1826 between Ottoman Empire and Greek rebels Battle of ArachovaPart of the Greek War of IndependenceThe Battle of Arachova by Peter von HessDate18–24 November 1826 (N.S.)LocationArachova, Sanjak of Eğriboz, Ottoman Empire (now Boeotia, Greece)Result Greek victoryBelligerents First Hellenic Republic Ottoman EmpireCommanders and leaders Georgios Karaiskakis Nikitas Stamatelopoulos[1] Mustafa Bey † Kehaya † Abdullah AghaStrength 950 2,000Casualties and ...
Automation-focused scripting language for Windows For the use of AutoHotkey by Wikipedia editors, see Wikipedia:AutoHotkey. AutoHotkeyDeveloper(s)Chris Mallett, Steve GrayInitial releaseNovember 10, 2003; 20 years ago (2003-11-10) (Chris Mallet)[1]July 18, 2008; 15 years ago (2008-07-18) (Steve Gray)[2][3]Stable release2.0.17[4] / 5 June 2024; 18 days ago (5 June 2024) Repositorygithub.com/AutoHotkey/AutoHo...
أحمد وحيدي (بالفارسية: احمد وحیدی) مناصب وزير الداخلية في المنصب25 أغسطس 2021 – 19 مايو 2024 عبد الرضا رحماني فضلي معلومات شخصية الميلاد 27 يونيو 1958 (العمر 66 سنة)شيراز الجنسية إيراني الديانة اسلام الحياة العملية المهنة سياسي، وضابط الخدمة العسكرية في ...
Роджер Пенскеангл. Roger Penske Дата рождения 20 февраля 1937(1937-02-20) (87 лет) Место рождения Шейкер-Хайтс, Огайо Страна США Род деятельности пилот Формулы-1, владелец команды NASCAR, бизнесмен Дети Gregory Penske[вд] и Jay Penske[вд] Награды и премии Медиафайлы на Викискладе �...
Canadian hockey commentator (born 1956) For the fictional television host, see Bob and Doug McKenzie. Bob McKenzieBorn (1956-08-16) August 16, 1956 (age 68)Toronto, Ontario, CanadaOccupationSportscasterEmployerTSNKnown forThe NHL on TSNSpouseCindyChildren3; including Mike McKenzie Robert Malcomson McKenzie (born August 16, 1956[1]) is a Canadian hockey commentator who has covered hockey since joining TSN in 1986. As a TSN Hockey Insider and TSN's Draft Expert, McKenzie provi...
Sum of an infinite series, approx 0.6434 In mathematics, Cahen's constant is defined as the value of an infinite series of unit fractions with alternating signs: C = ∑ i = 0 ∞ ( − 1 ) i s i − 1 = 1 1 − 1 2 + 1 6 − 1 42 + 1 1806 − ⋯ ≈ 0.643410546288... {\displaystyle C=\sum _{i=0}^{\infty }{\frac {(-1)^{i}}{s_{i}-1}}={\frac {1}{1}}-{\frac {1}{2}}+{\frac {1}{6}}-{\frac {1}{42}}+{\frac {1}{1806}}-\cdots \approx 0.643410546288...} (se...