La réaction de phosphorylation des hexoses est couplée à l'hydrolyse d'une molécule d'ATP. En effet, cette phosphorylation est endergonique dans les conditions cellulaires, donc thermodynamiquement défavorable ; le couplage avec la déphosphorylation de l'ATP (réaction fortement exergonique) permet une réaction-bilan qui est globalement exergonique, et qui devient donc thermodynamiquement favorable :
(1) Hexose + Pi → hexose 6-phosphate : réaction endergonique (thermodynamiquement défavorable) avec ΔrG°’ = 13,8kJ·mol-1 ;
L'hexokinase est ainsi adaptée aux besoins des tissus périphériques : optimiser l'absorption du glucose plasmatique pour l'utiliser comme substrat énergétique via la glycolyse, à la différence du foie dont la glucokinase présente une affinité sensiblement moindre et n'est pas inhibée par le glucose-6-phosphate mais par le fructose-6-phosphate.
Isoenzymes des mammifères
Les mammifères possèdent quatre isoenzymes d'hexokinase dont la distribution intracellulaire et la cinétique varient en fonction des substrats et des conditions physiologiques[5],[6]. Ces quatre isoenzymes sont désignées comme hexokinases I, II, III et IV ou comme hexokinases A, B, C et D selon les auteurs.
Hexokinases I, II et III
Les hexokinases I, II et III portent le noEC2.7.1.1. Elles sont dites « isoenzymes à faible KM » car elles ont une affinité élevée pour le glucose, d'où une constante de Michaelis inférieure à 1mM. Elles sont toutes les trois fortement inhibées par le produit de leur réaction, c'est-à-dire le glucose-6-phosphate[7]. Leur masse moléculaire est voisine de 100 kDa. Elles sont formées de deux sous-unités très semblables de 50 kDa chacune, mais l'hexokinase II est la seule à posséder des sites actifs sur ces deux sous-unités. La cinétique des hexokinases I et II suit l'équation de Michaelis-Menten aux concentrations de substrat physiologiques.
L'hexokinase I, ou hexokinase A, est ubiquitaire, c'est-à-dire présente dans tous les tissus des mammifères et est considérée comme une enzyme de maintenance qui n'est pas affectée par la plupart des changements physiologiques, hormonaux et métaboliques.
L'hexokinase II, ou hexokinase B, représente la principale isoforme régulée d'hexokinase d'un grand nombre de cellules et son expression est accrue dans de nombreux cancers[8]. C'est l'hexokinase du muscle et du cerveau. On la trouve également dans les mitochondries, ce qui lui permet d'accéder directement à l'ATP.
L'hexokinase III, ou hexokinase C, est inhibée par son substrat, le glucose, aux concentrations physiologiques. On sait peu de choses au sujet du mode de régulation de cette isoforme.
Hexokinase IV ou glucokinase
L'hexokinase IV des mammifères, ou glucokinase, est différente des trois autres aussi bien du point de vue de sa cinétique que de sa fonction et porte le noEC2.7.1.2. Sa constante de Michaelis pour le glucose est cent fois plus élevée que celle des hexokinases I, II et III, de sorte qu'elle n'est active sur son substrat que lorsque celui-ci est suffisamment concentré. Elle n'est constituée que d'une seule sous-unité dont la masse moléculaire est voisine de 50 kDa. Elle présente une régulation coopérative avec le glucose et n'est pas inhibée allostériquement par le glucose-6-phosphate.
↑(en) Alexander E. Aleshin, Chenbo Zeng, Hans D. Bartunik, Herbert J. Fromm et Richard B. Honzatko, « Regulation of hexokinase I: crystal structure of recombinant human brain hexokinase complexed with glucose and phosphate », Journal of Molecular Biology, vol. 282, no 2, , p. 345-357 (PMID9735292, DOI10.1006/jmbi.1998.2017, lire en ligne).
↑(en) John E. Wilson, « Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function », Journal of Experimental Biology, vol. 206, no Pt 12, , p. 2049-2057 (PMID12756287, DOI10.1242/jeb.00241, lire en ligne).
↑(en) Robert K. Crane et Alberto Sols, « The non-competitive inhibition of brain hexokinase by glucose-6-phosphate and related compounds », Journal of Biological Chemistry, vol. 210, no 2, , p. 597-606 (PMID13211596, lire en ligne).
↑(en) S. P. Mathupala1, Y. H. Ko et P. L. Pedersen, « Hexokinase II: Cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria », Oncogene, vol. 25, no 34, , p. 4777-4786 (PMID16892090, PMCID3385868, DOI10.1038/sj.onc.1209603, lire en ligne).
↑(en) Osaku Uyeda et Efraim Racker, « Regulatory mechanisms in carbohydrate metabolism. VII. Hexokinase and phosphofructokinase », Journal of Biological Chemistry, vol. 240, no 12, , p. 4682-4688 (PMID4221248, lire en ligne).
↑(en) Howard M. Katzen, « The multiple forms of mammalian hexokinase and their significance to the action of insulin », Advances in Enzyme Regulation, vol. 5, , p. 335-336 (PMID5603267, DOI10.1016/0065-2571(67)90025-8, lire en ligne).