La configuration électronique de l'atome de titane à l'état fondamental est [Ar] 4s2 3d2, de sorte que l'état d'oxydation +4 est prédominant. L'atome est cependant plus gros que celui de carbone, d'où des liaisons plus longues d'environ 30 %, par exemple 210pm pour les liaisons C–Ti du tétrabenzyltitane (C6H5CH2)4Ti contre 155pm pour des liaisons C–C typiques. Les composés de type tétraalkyltitane ne peuvent généralement pas être isolés en raison de la taille de l'atome de titane et la nature déficitaire en électrons des complexestétraédriques correspondants. Les complexes les plus nombreux et les plus utiles portent plusieurs types de ligands, par exemple des alcoolates et des cyclopentadiényles. Le titane est susceptible de former des complexes de coordinence élevée.
La plupart des composés organotitane sont des complexes de Ti(IV) ou de Ti(III). Les composés de Ti(II) sont plus rares, comme le dicarbonyle de titanocène(η5-C5H5)2Ti(CO)2 et le (CH3)2Ti(dmpe)2. L'hexacarbonyle de titane [Ti(CO)6]2− est un complexe formellement de Ti(–II)[3]. Le dimère [Cp2TiIIICl]2 est un exemple d'organotitane(III)[4]. La faible électronégativité du titane polarise la liaison C–Ti vers le carbone. Les ligands alkyle des composés organotitane sont par conséquent généralement nucléophiles. Le titane est plutôt oxophile, ce qui l'oriente vers les procédés à l'abri de l'air, et explique que les composés alkyltitane soient efficaces pour extraire leurs ligands avec des groupes oxo.
Le « réactif de Lombardo » est utilisé pour réaliser des méthylénations[9]. Il est fonctionnellement apparenté à un autre réactif, le chlorure de dibromométhane-zinc-titane(IV)[10]. Ces réactions pallient un manque des réactifs de Wittig en méthylénant les groupes carbonyle énolisables sans perte d'intégrité stéréochimique (méthylénation Lombardo). Il peut par exemple être également appliqué à la conversion d'un cétène en un allène[6],[11] :
Dérivés de titanocène
Lorsqu'on essaie de produire du « titanocène », c'est-à-dire le (η5-C5H5)2Ti, on obtient un complexe de fulvalène[12],[13]. Le dimère de titanocène a été identifié dans les années 1970[13],[14],[15] mais n'a été caractérisé structurellement qu'en 1992[16] tandis que les recherches ont conduit à de nombreuses innovations sur les complexes de cyclopentadiényle du titane[12]. Ce n'est qu'en 1998 qu'un véritable dérivé du titanocène a été identifié, l'espèceparamagnétique(η5-Me4C5SiMe3)2Ti[17].
Contrairement au titanocène lui-même, le dichlorure de titanocène Cp2TiCl2 et, dans une certaine mesure, le monochlorure de titanocène ont des chimies riches et bien définies. Le réactif de Tebbe, obtenu à partir de dichlorure de titanocène et de triméthylaluminium Me3Al est utilisé comme agent de méthylénation (conversion de R2C=O en R2C=CH2).
Le réactif de Tebbe catalyse l'addition d'alcènes simples pour donner des titanocyclobutanes, qui peuvent être considérés comme des intermédiaires de métathèse d’alcènes stables. Ces composés sont eux-mêmes des réactifs, tels que le 1,1-bis(cyclopentadiényl)-3,3-diméthyltitanocyclobutane, produit d'addition du réactif de Tebbe avec l'isobutylène (CH3)2C=CH2 catalysé par la 4-diméthylaminopyridine[18].
Le réactif de Petasis, ou diméthyltitanocène Cp2Ti(CH3)2 est préparé à partir de dichlorure de titanocène et de méthyllithium CH3Li dans de l'éther diéthylique (CH3CH2)2O. Il est plus facile à préparer et à manipuler que le réactif de Tebbe ; il catalyse également des méthylénations[18].
↑(en) Manfred T. Reetz, « Reactivity and Structure Concepts in Organic Chemistry », Organotitanium Reagents in Organic Synthesis, vol. 24, Springer, 1986. (ISBN0-387-15784-0)
↑(en) Michel Ephritikhine, « A new look at the McMurry reaction », Chemical Communications, no 23, , p. 2549-2554 (DOI10.1039/a804394i, lire en ligne)
↑(en) Christoph Elschenbroich, Organometallics, 3e éd., Wiley, 2006. (ISBN978-3-527-29390-2)
↑ a et b(en) L. E. Manzer, E. A. Mintz et T. J. Marks, « 18. Cyclopentadienyl Complexes of Titanium(III) and Vanadium(III) », Inorganic Syntheses, vol. 21, (DOI10.1002/9780470132524.ch18, lire en ligne)
↑(en) Gwyneth R. Davies, J. A. J. Jarvis et B. T. Kilbourn, « The crystal and molecular structures (at –40 °C) of the tetrabenzyls of titanium, hafnium, and tin », Journal of the Chemical Society D: Chemical Communications, no 23, , p. 1511-1512 (DOI10.1039/C29710001511, lire en ligne)
↑ a et b(en) J. F. Hartwig, Organotransition Metal Chemistry, from Bonding to Catalysis, University Science Books, New York, 2010. (ISBN1-891389-53-X)
↑(en) René Imwinkelried et Dieter Seebach, « 3'-Nitro-1-Phenylethanol by Addition of Methyltriisopropoxytitanium to m-Nitrobenzaldehyde », Organic Syntheses, vol. 67, , p. 180 (DOI10.15227/orgsyn.067.0180, lire en ligne)
↑(en) Jin Kun Cha et Oleg G. Kulinkovich, « The Kulinkovich Cyclopropanation of Carboxylic Acid Derivatives », Organic Reactions, vol. 77, , p. 1-159 (DOI10.1002/0471264180.or077.01, lire en ligne)
↑(en) Luciano Lombardo, « Methylenation of Carbonyl Compounds: (+)-3-Methylene-cis-p-Menthane », Organic Syntheses, vol. 65, , p. 81 (DOI10.15227/orgsyn.065.0081, lire en ligne)
↑(en) Kazuhiko Takai, Yuji Hotta, Koichiro Oshima et Hitosi Nozaki, « Effective methods of carbonyl methylenation using CH2I2-Zn-Me3Al and CH2Br2-Zn-TiCl4 system », Tetrahedron Letters, vol. 19, no 27, , p. 2417-2420 (DOI10.1016/S0040-4039(01)94789-6, lire en ligne)
↑(en) Stephen P. Marsden et Pascal C. Ducept, « Synthesis of highly substituted allenylsilanes by alkylidenation of silylketenes », Beilstein Journal of Organic Chemistry, vol. 1, no 1, , p. 5 (PMID16542018, PMCID1399453, DOI10.1186/1860-5397-1-5, lire en ligne)
↑ a et b(en) R. C. Mehrotra et A. Singh, « 4.3.6 η5-Cyclopentadienyl d-Block Metal Complexes », Organometallic Chemistry: A Unified Approach, 2e éd., New Age International Publishers, New Delhi, 2000, p. 243-268. (ISBN978-8122412581).
↑ a et b(en) P. C. Wailes, R. S. P. Coutts et H. Weigold, « Titanocene », Organometallic Chemistry of Titanium, Zirconium, and Hafnium. Organometallic Chemistry, Academic Press, 1974, pp. 229–237. (ISBN978-0323156479).
↑(en) Helena Antropiusová, Alena Dosedlová, Vladimír Hanuš et Karel Mach, « Preparation of μ-(η5:η5-Fulvalene)-di-μ-hydrido-bis(η5-cyclopentadienyltitanium) by the reduction of Cp2TiCl2 with LiAlH4 in aromatic solvents », Transition Metal Chemistry, vol. 6, no 2, , p. 90-93 (DOI10.1007/BF00626113, S2CID101189483, lire en ligne)
↑(en) Tomas Cuenca, Wolfgang A. Herrmann et Terence V. Ashworth, « Chemistry of oxophilic transition metals. 2. Novel derivatives of titanocene and zirconocene », Organometallics, vol. 5, no 12, , p. 2514-2517 (DOI10.1021/om00143a019, lire en ligne)
↑(en) Sergei I. Troyanov, Helena Antropiusová et Karel Mach, « Direct proof of the molecular structure of dimeric titanocene; The X-ray structure of μ(η5:η5-fulvalene)-di-(μ-hydrido)-bis(η5-cyclopentadienyltitanium)· 1.5 benzene », Journal of Organometallic Chemistry, vol. 427, no 1, , p. 49-55 (DOI10.1016/0022-328X(92)83204-U, lire en ligne)
↑(en) Paul J. Chirik, « Group 4 Transition Metal Sandwich Complexes: Still Fresh after Almost 60 Years », Organometallics, vol. 29, no 7, , p. 1500-1517 (DOI10.1021/om100016p, lire en ligne)
↑ a et b(en) Richard C. Hartley, Jianfeng Li, Calver A. Main et Gordon J. McKiernan, « Titanium carbenoid reagents for converting carbonyl groups into alkenes », Tetrahedron, vol. 63, no 23, , p. 4825-4864 (DOI10.1016/j.tet.2007.03.015, lire en ligne)
↑(en) Antonio Rosales, Ignacio Rodríguez-García, Juan Muñoz-Bascón, Esther Roldan-Molina, Natalia M. Padial, Laura Pozo Morales, Marta García-Ocaña et J. Enrique Oltra, « The Nugent–RajanBabu Reagent: A Formidable Tool in Contemporary Radical and Organometallic Chemistry », European Journal of Organic Chemistry, vol. 2015, no 21, , p. 4592-4592 (DOI10.1002/ejoc.201500761, lire en ligne)
↑(en) Yuichi Handa et Junji Inanaga, « A highly stereoselective pinacolization of aromatic and α, β-unsaturated aldehydes.dta mediated by titanium(III)-magnesium(II) complex », Tetrahedron Letters, vol. 28, no 46, , p. 5717-5718 (DOI10.1016/S0040-4039(00)96822-9, lire en ligne)
↑(en) William A. Nugent et T. V. RajanBabu, « Transition-metal-centered radicals in organic synthesis. Titanium(III)-induced cyclization of epoxy olefins », Journal of the American Chemical Society, vol. 110, no 25, , p. 8561-8562 (DOI10.1021/ja00233a051, lire en ligne)
↑(en) Rudolph. Jungst, Dennis. Sekutowski, Jimmy. Davis, Matthew. Luly et Galen. Stucky, « Structural and magnetic properties of di-µ-chloro-bis[bis(η5-cyclopentadienyl)titanium(III)] and di-µ-bromo-bis[bis(η5-methylcyclopentadienyl)titanium(III)] », Inorganic Chemistry, vol. 16, no 7, , p. 1645-1655 (DOI10.1021/ic50173a015, lire en ligne)