Henry Gilman(en) synthétise le méthylcuivre en 1936. En 1941, Kharash découvre que la réaction entre un réactif de Grignard et la cyclohexénone en présence de Cu(I) résulte d'une addition-1,4 au lieu d'une addition-1,2[2]. En 1952, Gilman travaille sur le premier dialkylcuivre. Dans les années 1960, on fabrique des complexes d'alcènes et de CO en présence de cuivre(I).
Les complexes de cuprates forment des aggrégats compliqués aussi bien sous forme cristalline qu'en solution. Le diméthylcuprate de lithium se dimérise dans le diéthyléther sous la forme d'un cycle à huit où deux atomes de lithium sont coordonnés entre les deux groupes méthyle. De façon similaire, le diphénylcuprate de lithium forme un dimère éthéré, [{Li(OEt2)}(CuPh2)]2, à l'état solide[3] :
En 1972, Lappert est le premier à déterminer la structure cristalline d'un organocuprate, CuCH2SiMe3. Ce composé est relativement stable à cause des groupes triméthylsilyle encombrants, qui lui assurent une protection stérique. C'est un tétramère formant un cycle à huit avec des liaisons Cu-C alternées. De plus, les quatre atomes de cuivre forme un cycle Cu4 plan à base de liaisons à trois centres et deux électrons. La liaisons cuivre-cuivre est de 242pm contre 256pm pour le cuivre solide. Dans le pentamésitylpentacuprate un cycle de cuivre à cinq se forme et le pentafluorophénylcuprate est un tétramère[4].
Intermédiaires Cu(III)
Dans de nombreuses réactions organométalliques impliquant le cuivre, le mécanisme réactionnel passe par un intermédiaire du cuivre à l'état d'oxydation +3.
Par exemple, lors d'éliminations réductrices, le Cu(III) est réduit en Cu(I). Cependant, les composés du Cu(III) sont plutôt rares en chimie, et jusqu'à récemment, l'existence d'organocuivre(III) a été sujet à caution. En 2007, on a obtenu la première preuve spectroscopique de la présence d'un Cu(III) dans une addition conjuguée d'un réactif de Gilman sur une énone[5] :
Dans une expérience RMN dite à injection rapide à −100 °C, le réactif de Gilman Me2CuLi (stabilisé par l'iodure de lithium) fut introduit dans un milieu de cyclohexénone (1) permettant de détecter un complexe pi du cuivre — alcène (2). Par addition successive de cyanure de triméthylsilyle l'espèce Cu(III) (3) est formée (stable indéfiniment à cette température), et en augmentant la température jusqu'à −80 °C, l'addition conjuguée produit (4). Selon une expérience d'accompagnement in silico[6], l'intermédiaire Cu(III) a une géométrie plan carré avec le groupe cyano en position cis par rapport au groupe méthinecyclohexényle et anti-parallèle au proton du groupe méthine. Avec d'autres ligands que le groupe cyano, cette étude prédit des composés du Cu(III) stables à température ambiante.
Synthèse
Les halogénures de cuivre réagissent avec les organolithiens pour former des organocuprates. Le phénylcuivre est préparé par réaction entre le phényllithium avec le bromure de cuivre(I) dans l'éther diéthylique. La réaction avec un second équivalent de R-Li sur le R-Cu donne le diorganocuprate lithié. Les halogénures de cuivre peuvent aussi réagir avec les organomagnésiens. Le pentamesitylpentacuivre est préparé à partir du bromure de mésityle magnésium et du chlorure de cuivre(I).
Les réactions impliquant les organocuprates peuvent être classifiées selon différents types.
Réactions de substitution
Les réactions de substitution des organocuprates lithiés R2CuLi sur les halogénoalcanes R'-X donnent l'alkylcuivre R-Cu, le produit de couplage R-R' et l'halogénure de lithium Li-X. Le mécanisme réactionnel est basé sur une attaque nucléophile, plus exactement une addition oxydante de l'halogénure d'alkyle sur le Cu(I), l'oxydant en intermédiaire Cu(III) plan, suivie par une élimination réductrice, l'attaque nucléophile étant l'étape cinétiquement déterminante. Dans le cas d'une substitution par un iodure, un mécanisme de transfert monoélectronique a été proposé.
Le couplage réductif peut être le couplage entre un halogénure d'aryle avec un équivalent w en cuivre métallique comme dans la réaction d'Ullmann. Un exemple de couplage croisé utilisé de nos jours est la réaction dite de couplage décarboxylant : une quantité catalytique de Cu(I) déplace un groupe carboxyle formant un intermédiaire arylcuivre (ArCu). Simultanément un catalyseur au palladium convertit un bromure d'aryle en intermédiaire organopalladique (Ar'PdBr) et un biaryle est formé par transmétallation[8],[9].
Le couplage neutre peut être le couplage entre un alcyne terminal et halogénoalcyne en présence d'un sel de cuivre(I) comme dans le couplage de Cadiot-Chodkiewicz. Le couplage thermique de deux organocuprates est aussi possible.
Il est possible d'effectuer une addition conjuguée entre une énone et un organocuprate. Dans une situation similaire, si un organomagnésien (RMgX) était utilisé, la réaction serait une addition 1,2[10]. Le mécanisme de l'addition 1,4 du cuprate sur les énones passe par une addition nucléophile des espèces Cu(I) sur le carbone en β de la fonction alcène pour former un intermédiaire Cu(III), suivie par une élimination réductrice en Cu(I)[11]. Dans l'exemple ci-dessous, (réaction entre le bromure de méthylmagnésium et l'isophorone), les produits de réaction ont été analysés en fonction de l 'ajout ou non de chlorure de cuivre au milieu réactionnel[2]. Le schéma ci-dessous présente le cas en présence de CuCl :
Sans le sel de cuivre, les produits majoritaires sont l'alcoolB (42 %) formé par addition nucléophile du groupe carbonyle et le dièneC (48 %) résultant d'une réaction de déshydratation. En présence de sel de cuivre, le produit majoritaire est l'adduit 1,4 A (82 %).
Il est également possible d'effectuer des additions 1,6, comme dans la production commerciale en une étape du fulvestrant[12] :
Carbocupration
La carbocupration est une addition nucléophile d'un organocuprate (R-Cu) sur l'acétylène ou un sur un alcyne terminal. Le produit de la réaction est un alcénylcuivre (RC=C-Cu)[13].C'est un cas particulier de carbométallation appelé aussi réaction de Normant[14].
Notes et références
↑(en) R. C. Böttger, « Ueber die Einwirkung des Leuchtgases auf verschiedene Salzsolutionen, insbesondere auf eine ammoniakalische Kupferchlorürlösung », Annalen, vol. 109, no 3, , p. 351 (DOI10.1002/jlac.18591090318)
↑ a et b(en) Kharasch, M. S et Tawney, P. O, « Factors Determining the Course and Mechanisms of Grignard Reactions. II. The Effect of Metallic Compounds on the Reaction between Isophorone and Methylmagnesium Bromide », J. Am. Chem. Soc., vol. 63, , p. 2308 (DOI10.1021/ja01854a005)
↑(en) N. P. Lorenzen, E. Weiss, « Synthesis and Structure of a Dimeric Lithium Diphenylcuprate:[{Li(OEt)2}(CuPh2)]2 », Angew. Chem. Int. Ed., vol. 29, no 3, , p. 300–302 (DOI10.1002/anie.199003001)
↑ a et b(en) Steven H. Bertz, Stephen Cope, Michael Murphy, Craig A. Ogle et Brad J. Taylor, « Rapid Injection NMR in Mechanistic Organocopper Chemistry. Preparation of the Elusive Copper(III) Intermediate1 », Journal of the American Chemical Society, vol. 129, no 23, , p. 7208–9 (PMID17506552, DOI10.1021/ja067533d)
↑(en) Haipeng Hu et James P. Snyder, « Organocuprate Conjugate Addition: The Square-Planar "CuIII" Intermediate », Journal of the American Chemical Society, vol. 129, no 23, , p. 7210–1 (PMID17506553, DOI10.1021/ja0675346)
↑Fulvestrant: From the Laboratory to Commercial-Scale Manufacture Eve J. Brazier, Philip J. Hogan, Chiu W. Leung, Anne O’Kearney-McMullan, Alison K. Norton, Lyn Powell,Graham E. Robinson, and Emyr G. Williams Organic Process Research & Development 2010, 14, 544–552 DOI10.1021/op900315j
↑(en) J. Normant et M. Bourgain, « Synthese stereospecifique and reactivite d' organocuivreux vinyliques », Tetrahedron Letters, vol. 12, no 27, , p. 2583 (DOI10.1016/S0040-4039(01)96925-4)