L'estimation la plus récente du diamètre d'Ixion est 710 km, même s'il a d'abord été estimé entre 1 200 et 1 055km ; cela en fait le quatrième plus grand plutino connu après 2003 AZ84, Orcus et Pluton. À la lumière visible, Ixion apparaît de couleur sombre et relativement rouge en raison des composés organiques recouvrant sa surface, un mélange de mélange de carbone amorphe sombre et de tholins. De la glace d'eau est soupçonnée d'être présente à la surface d'Ixion, mais elle peut aussi exister en quantités infimes cachées sous une épaisse couche de composés organiques. Sa période de rotation est connue avec peu de précision, les dernières mesures par photométrie donnant une période allant de 12 à 16 heures.
Plusieurs astronomes considèrent Ixion comme une potentielleplanète naine, alors que d'autres la considèrent comme un objet de transition entre les petits corps du Système solaire de forme irrégulière et des planètes naines sphériques. On ne connaît aucun satellite naturel d'Ixion, donc sa masse et sa densité restent inconnues.
Dans la nuit du 22 mai 2001, les astronomes américains James Elliot et Lawrence Wasserman identifient Ixion sur des images numériques du ciel austral prises avec le télescope Víctor M. Blanco de 4 mètres de Cerro Tololo[2],[4]. Ixion est d'abord relevée par Elliot lors de la comparaison de deux images prises à environ deux heures d'intervalle, révélant le lent mouvement d'Ixion par rapport aux étoiles à l'arrière-plan[a],[5]. Au moment de sa découverte, Ixion est située dans la constellation du Scorpion[b].
Les découvreurs d'Ixion notent qu'il apparaissait relativement brillant pour un objet éloigné, ce qui implique qu'il pourrait être assez grand relativement aux autres objets transneptuniens[6]. La découverte va dans le sens des suppositions selon lesquelles il y aurait de multiples grands objets trans-neptuniens non découverts comparables en taille à Pluton[7]. Depuis la découverte d'Ixion, de nombreux grands objets trans-neptuniens, notamment les planètes nainesHauméa, Eris et Makémaké, ont été découverts[8].
La découverte d'Ixion est officiellement annoncée par le Centre des planètes mineures (MPC) dans une circulaire électronique des planètes mineures le 1er juillet 2001[4]. L'objet reçoit la désignation provisoire2001 KX76, indiquant qu'il a été découvert dans la seconde moitié de mai 2001 ; Ixion est le 1 923e objet découvert dans la seconde quinzaine de mai, comme l'indiquent la dernière lettre et les derniers chiffres de sa désignation provisoire[c],[9].
Au moment de sa découverte, Ixion est considérée comme l'un des plus grands objets trans-neptuniens du Système solaire, comme l'implique sa magnitude absolue élevée[2],[6]. Ces caractéristiques d'Ixion incitent des observations de suivi afin de déterminer son orbite, ce qui améliorerait à son tour la certitude des estimations ultérieures au sujet de la taille d'Ixion[7],[10]. En août 2001, une équipe d'astronomes a utilise l'observatoire virtuel Astrovirtel de l'Observatoire européen austral pour parcourir automatiquement des photographies d'archives de pré-découvertes obtenues à partir de divers observatoires[7]. L'équipe obtient neuf images de pré-découvertes d'Ixion, dont la plus ancienne a été prise par l' observatoire de Siding Spring le 17 juillet 1982[11]. Ces images ainsi que les observations de suivi ultérieures avec le télescope de 2,2 mètres MPG-ESO de l'observatoire de La Silla en 2001 prolongent l'arc d'observation d'Ixion sur plus de 18 ans, suffisant pour que son orbite soit déterminée avec précision et le rendant éligible à la numérotation par le Centre des planètes mineures[7],[11]. Ixion reçoit le numéro de planète mineure permanent 28978 le 2 septembre 2001[12].
Dans la mythologie grecque, Ixion était le roi des légendaires Lapithes de Thessalie et avait épousé Dia, une fille de Déionée (ou Éionée), à qui Ixion avait promis de donner de précieux cadeaux de mariage[14]. Ixion invite ainsi Deioneus à un banquet mais la pousse plutôt dans un piège de charbons ardents et de bois, et la tuant sur le coup. Bien que les dieux inférieurs méprisent ses actions, Zeus prend pitié d'Ixion et l'invite à un banquet avec d'autres dieux. Plutôt que d'être reconnaissant, Ixion devient lubrique envers la femme de Zeus, Héra. Zeus a découvert ses intentions et créé le nuage Néphélé sous la forme d'Héra. Cela trompe Ixion et celui-ci s'accouple avec le nuage, engendrant la race des Centaures[14]. Pour ses crimes, Ixion est expulsé de l'Olympe, frappé d'un coup de foudre et lié à une roue brûlante dans le Tartare pour l'éternité[15].
Le nom d'Ixion est suggéré par E. K. Elliot, qui a également été impliqué dans la dénomination de l'objet de la ceinture de Kuiper (38083) Rhadamanthus[15],[16]. La confirmation de la nomination de l'objet est publiée par le Centre des planètes mineures le 28 mars 2002[17].
Les symboles astronomiques étant déconseillés par l'Union astronomique internationale[18], Ixion n'a jamais reçu de symbole dans la littérature astronomique.
Caractéristiques orbitales
Orbite
Vue polaire de l'orbite d'Ixion (en vert) aux côtés de plusieurs autres grands plutinos
Vue de côté de l'orbite d'Ixion (en vert) comparée à celles de Pluton (en rouge) et de Neptune (en gris). Le périhélie (q) et l'aphélie (Q) sont montrées pour Pluton et Ixion.
Ixion est classé comme un plutino, c'est-à-dire un objet ayant une résonance orbitale en mouvement moyen de 2:3 avec Neptune[d]. Autrement dit, il complète deux orbites autour du Soleil lorsque Neptune en complète trois[19]. Au moment de la découverte d'Ixion, il est initialement pensé que l'objet était en résonance orbitale 3:4 avec Neptune, ce qui aurait rapproché Ixion du Soleil[2],[6]. Ixion orbite autour du Soleil à une distance moyenne de 38,9 unités astronomiques, prenant 251 ans pour effectuer une orbite complète[16]. Ceci est caractéristique de tous les plutinos, qui ont des périodes orbitales d'environ 250 ans et des demi-grands axes d'environ 39 UA[20].
Comme celle de Pluton, l'orbite d'Ixion est fortement allongée et inclinée par rapport à l'écliptique : Ixion possède une excentricité orbitale de 0,24 et une inclinaison orbitale de 19,6 degrés, légèrement supérieure à l'inclinaison de Pluton qui est de 17 degrés[16],[20]. Au cours de son orbite, la distance d'Ixion au Soleil varie de 30,1 UA au périhélie à 39,8 UA à l'aphélie[16]. Bien que l'orbite d'Ixion soit similaire à celle de Pluton, leurs orbites sont orientées différemment : le périhélie d'Ixion est en dessous de l'écliptique tandis que celui de Pluton est au-dessus. Dans les années 2020, Ixion se situe à environ 39 UA du Soleil et s'en rapproche progressivement, sa prochaine aphélie se produisant en 2070[16]. Les simulations du Deep Ecliptic Survey montrent qu'Ixion pourrait voir son périhélie minimum (qmin) diminuer jusqu'à 27,5 UA au cours des 10 millions d'années à venir[21].
Les premières tentatives pour déterminer la période de rotation d'Ixion sont menées par José Luis Ortiz Moreno et ses collègues en 2001, mais donnent des résultats peu concluants. Bien que leurs données photométriques à court terme aient été insuffisantes pour déterminer la période de rotation d'Ixion en fonction de ses variations de luminosité, ils ont néanmoins trouvé que l'amplitude de la courbe de lumière d'Ixion se situait en dessous de 0,15 magnitudes[25],[24]. Les astronomes Sheppard et Jewitt obtiennent des résultats tout aussi peu concluants en 2003 et fournissent une contrainte d'amplitude inférieure à 0,05 magnitudes, considérablement inférieure à celle d'Ortiz et al.[26].
En 2010, les astronomes Rousselot et Petit observent Ixion avec le New Technology Telescope de l'Observatoire européen austral et déterminent que la période de rotation d'Ixion était de 15,9 ± 0,5 heures, avec une amplitude de courbe de lumière d'environ 0,06 magnitudes[23]. En 2016, Galiazzo et ses collègues trouvent une période de rotation plus courte de 12,4 ± 0,3 heures, bien qu'ils aient calculé qu'il existe une probabilité de 1,2 % que leur résultat soit erroné[22].
Caractéristiques physiques
Taille et albédo
Ixion a un diamètre mesuré de 710 km, avec une magnitude absolue de 3,77 et un albédo géométrique (ou réflectivité) de 0,11[27],[28]. Par rapport à Pluton et à sa lune Charon, Ixion fait moins d'un tiers du diamètre de Pluton et environ trois cinquièmes du diamètre de Charon[e]. Ixion est le quatrième plus grand plutino connu, derrière 2003 AZ84, Orcus et Pluton[20]. C'est l'objet intrinsèquement le plus brillant découvert par le Deep Ecliptic Survey[29], et il fait partie des vingt objets transneptuniens les plus brillants connus selon l'astronome Michael Brown et le Centre des planètes mineures[8],[30].
Ixion est l'objet de la ceinture de Kuiper le plus grand et le plus brillant connu au moment de sa découverte[10],[29]. Sous l'hypothèse d'un faible albédo, il a été présumé avoir un diamètre d'environ 1,200 km, ce qui l'aurait rendu plus grand que la planète naine Cérès et comparable en taille à Charon[2],[40]. Les observations ultérieures d'Ixion avec le télescope MPG/ESO de l'Observatoire de La Silla ainsi que l'Astrovirtel de l'Observatoire européen austral en août 2001 ont conclu à une taille similaire d'environ 1,200–1,400 km (750–870 mi), toujours sous l'ancienne hypothèse d'un faible albédo[7].
En 2002, les astronomes de l'Institut Max Planck de radioastronomie mesurent le rayonnement thermique d'Ixion aux longueurs d'onde millimétriques avec le télescope de 30-mètres de l'IRAM et obtient un albédo de 0,09, correspondant à un diamètre de 1,055 kilomètres, conformément aux hypothèses précédentes sur la taille et l'albédo d'Ixion[31]. Ils ont réévaluent ensuite leurs résultats en 2003 et se sont rendu compte que leur détection de émission thermique d'Ixion était fausse. Ainsi, les observations de suivi avec le télescope IRAM n'ont détecté aucune émission thermique dans la gamme millimétrique à des fréquences de 250 GHz, impliquant un albédo élevé et par conséquent une taille plus petite pour Ixion. La limite inférieure de l'albédo d'Ixion étant à présent limitée à 0,15, cela suggère que le diamètre d'Ixion ne dépasse pas 804 kilomètres[32].
Avec des télescopes spatiaux tels que le télescope spatial Spitzer, les astronomes ont pu mesurer plus précisément les émissions thermiques d'Ixion, permettant des estimations plus précises de son albédo et de sa taille[41],[36]. Des mesures thermiques préliminaires avec Spitzer en 2005 donnent une contrainte d'albédo beaucoup plus élevée de 0,25 à 0,50, correspondant à une plage de diamètre de 400–550 km[34]. D'autres mesures thermiques de Spitzer sur plusieurs plages de longueurs d'onde en 2007 donnent des estimations de diamètre moyen d'environ 446 kilomètres et 573 kilomètres pour une solution à bande unique et à deux bandes pour les données, respectivement. A partir de ces résultats, le diamètre moyen retenu est de 650+260 −220, juste au-delà de la contrainte de diamètre de Spitzer en 2005, mais avec une grande marge d'erreur[36]. Le diamètre d'Ixion est ensuite révisé à 617 kilomètres d'après des observations thermiques multi-bandes réalisées par les téléscopes spatiaux Herschel et Spitzer en 2013[39].
Le 13 octobre 2020, Ixion occulte une étoile géante rouge de magnitude 10, bloquant sa lumière pendant une durée d'environ 45 secondes[27]. L'occultation stellaire est observée par des astronomes de sept sites différents à travers l'ouest des États-Unis[27]. Sur les dix observateurs participants, huit d'entre eux ont signalé des détections positives de l'occultation[42]. Les observateurs de l'observatoire Lowell fournissent des mesures très précises concernant l'occultation, permettant des contraintes strictes sur le diamètre d'Ixion et sa possible atmosphère. Un ajustement elliptique pour le profil d'occultation d'Ixion donne des dimensions projetées d'environ 757 kilomètres × 685 kilomètres, correspondant à un diamètre sphérique projeté de 709.6 ± 0,2 km. Les données de l'observatoire Lowell placent une limite supérieure à la pression atmosphérique à 2 microbars pour toute atmosphère possible sur Ixion[27].
Spectre et surface
La surface d'Ixion est très sombre, ressemblant à celles d'objets plus petits et primitifs de la ceinture de Kuiper tels qu'Arrokoth[28]. Dans le spectre visible, Ixion apparaît de couleur relativement rouge, semblable à Quaoar[43]. Le spectre de réflectance d'Ixion affiche un gradient spectral rouge qui s'étend des longueurs d'onde de 0,4 à 0,95 μm, dans lequel il réfléchit plus de lumière. A partir de 0,85 μm, le spectre d'Ixion devient plat et sans relief, en particulier aux longueurs d'onde proches de l'infrarouge[43]. Dans le proche infrarouge, le spectre de réflectance d'Ixion apparaît de couleur neutre et ne présente pas de raies spectrales correspondant à la glace d'eau, aux longueurs d'onde de 1,5 et 2 μm[19]. Bien que la glace d'eau semble absente du spectre proche infrarouge d'Ixion, Barkume et al. signalent la détection de faibles signatures d'absorption de glace d'eau dans le spectre proche infrarouge d'Ixion en 2007[44]. Le spectre homogène dans le proche infrarouge d'Ixion indique que sa surface est recouverte d'une épaisse couche de composés organiques sombres irradiés par le Soleil et le rayonnement cosmique[19].
La couleur rouge de la surface d'Ixion provient de l'irradiation des clathrates contenant de l'eau et des matières organiques par le rayonnement solaire et les rayons cosmiques, qui produit des copolymères foncés et rougeâtres appelés tholins[25]. La production de tholins à la surface d'Ixion est responsable du spectre rouge et sans relief d'Ixion ainsi que de son faible albédo de surface. La couleur neutre dans le proche infrarouge d'Ixion et le manque apparent de glace d'eau indiquent qu'une épaisse couche de tholins couvre sa surface, ce qui suggère qu'Ixion a subi une irradiation à long terme et n'a pas connu de resurfaçage grâce à des impacts cosmiques d'impact qui pourraient autrement exposer la glace d'eau située en dessous[19],[45]. Alors qu'Ixion est généralement connu pour avoir une couleur rouge, les observations dans le visible et le proche infrarouge du Very Large Telescope (VLT) en 2006 et 2007 ont paradoxalement trouvé une couleur plus bleue[46]. Cet écart est conclu comme une indication d'hétérogénéités sur sa surface, ce qui peut également expliquer les détections contradictoires de glace d'eau dans diverses études[46].
En 2003, les observations du VLT ont provisoirement résolu une caractéristique d'absorption faible à 0,8 μm dans le spectre d'Ixion, ce qui pourrait éventuellement être attribué à des matériaux de surface altérés par l'eau[25]. Cependant, cela n'a pas été confirmé dans une étude de suivi par Boehnhardt et ses collègues en 2004, concluant que l'écart entre les résultats spectroscopiques de 2003 et 2004 pourrait être le résultat de la surface hétérogène d'Ixion. Dans cette même étude, leurs résultats d'observations photométriques et polarimétriques suggèrent que la surface d'Ixion est constituée d'un mélange de matériaux principalement sombres et d'une plus petite proportion de matériaux glacés plus brillants. Boehnhardt et al. suggèrent un rapport de mélange de 6:1 pour les matériaux sombres et clairs comme modèle le mieux adapté pour un albédo géométrique de 0,08. Sur la base des résultats spectroscopiques visibles et infrarouges combinés, ils suggèrent que la surface d'Ixion se compose en grande partie d'un mélange de carbone amorphe et de tholins, avec le modèle le mieux adapté suivant de la composition de surface d'Ixion : 65 % de carbone amorphe, 20 % de tholins de glace cométaire (tholin de glace II), 13 % tholins similaires à ceux de Titan (riches en azote et en méthane) et 2 % de glace d'eau[25].
En 2005, les astronomes Lorin et Rousselot observent Ixion avec le VLT dans le but de rechercher des preuves d'activité cométaire. Ils n'ont pas détecté de chevelure de comète autour de l'objet, plaçant une limite supérieure de 5,2 kg par seconde pour le taux de production de poussière d'Ixion[47].
L'astronome Gonzalo Tancredi considère Ixion comme un candidat probable car il a un diamètre supérieur à 450 kilomètres, la taille minimale estimée pour qu'un objet atteigne l'équilibre hydrostatique dans l'hypothèse d'une composition principalement glacée[48]. Ixion affiche également une amplitude de courbe de lumière inférieure à 0,15 magnitudes, indiquant une forme sphéroïdale probable[49]. L'astronome américain Michael E. Brown considère aussi qu'Ixion est très probablement une planète naine, la plaçant à l'extrémité inférieure de la plage "très probable"[8]. Cependant, en 2019, l'astronome William Grundy et ses collègues proposent que des objets trans-neptuniens de taille similaire à Ixion, environ 400–1,000 km de diamètre, ne se sont pas effondrés en corps solides et sont donc transitionnels entre des corps plus petits, poreux (et donc de faible densité), et des corps planétaires plus grands, plus denses, plus brillants et géologiquement différenciés tels que les planètes naines. Ixion se situe dans cette gamme de taille, suggérant qu'il n'est au plus que partiellement différencié, avec une structure interne poreuse. Alors que l'intérieur d'Ixion peut s'être effondré gravitationnellement, sa surface est restée non compressée, ce qui implique qu'Ixion pourrait ne pas être en équilibre hydrostatique et donc pas une planète naine[50]. Cependant, cette notion pour Ixion ne peut actuellement pas être testée : l'objet n'est actuellement pas connu pour avoir des satellites naturels, et donc la masse et la densité d'Ixion ne peuvent actuellement pas être mesurées. Seules deux tentatives, en 2001 et en 2005, avec le télescope spatial Hubble ont été faites pour trouver un satellite à une distance angulaire de 0,5 seconde d'arc d'Ixion[51],[52]. Michael E. Brown, responsable de ces tentatives, suggère en 2008 qu'il y n'a que 0,5 % de chance qu'un satellite puisse avoir été manqué lors de ces recherches[37].
Exploration
New Horizons
La sonde spatiale New Horizons, qui survole avec succès Pluton en 2015, observe à distance Ixion grâce à son imageur longue portée les 13 et 14 juillet 2016[28]. Elle détecte Ixion avec une magnitude de 20,2 depuis une distance de 15 UA, et a pu l'observer à partir d'un angle de phase élevé de 64 degrés, permettant de déterminer les propriétés de diffusion de la lumière et le comportement de la courbe de phase photométrique de sa surface[28].
Dans une étude publiée par Ashley Gleaves et ses collègues en 2012, Ixion est considérée comme une cible potentielle pour un concept de mission d'orbiteur, qui serait lancée sur une fusée Atlas V 551 ou Delta IV HLV[53]. Pour une telle mission de mise en orbite autour d'Ixion, la sonde devrait avoir une date de lancement en novembre 2039 et utiliser une assistance gravitationnelle de Jupiter, prenant 20 à 25 ans pour y arriver. Gleaves conclut qu'Ixion et (38628) Huya sont les meilleures cibles pour l'orbiteur, car les trajectoires nécessaires impliquent le moins de manœuvres pour l'insertion orbitale autour de l'une ou l'autre[53].
Pour une mission de survol vers Ixion, la planétologue Amanda Zangari calcule qu'une sonde spatiale pourrait mettre un peu plus de 10 ans pour arriver à Ixion en utilisant une assistance gravitationnelle de Jupiter, sur la base d'une date de lancement de 2027 ou 2032[54]. Ixion serait de 31 à 35 UA du Soleil lorsque la sonde y arriverait. Alternativement, une mission de survol avec une date de lancement ultérieure de 2040 prendrait également un peu plus de 10 ans, en utilisant aussi une assistance gravitationnelle Jupiter. Au moment où la sonde arriverait en 2050, Ixion serait de 31 à 32 UA du Soleil. D'autres trajectoires utilisant des assistances gravitationnelles de Jupiter ou de Saturne ont également été envisagées[54].
Notes et références
Notes
(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « 28978 Ixion » (voir la liste des auteurs).
↑La Minor Planet Electronic Circular publiée en juillet 2001 énumère deux coordonnées d'Ixion tirées des deux observations enregistrées à Cerro Tololo (code observatoire 806) le 22 mai 2001. Le temps entre la première et la deuxième observation est de 0,08127 jour, soit environ 1,95 heure. Dans cet intervalle de temps, Ixion s'est déplacé d'environ 0,41 seconde d'arc de sa position originale observée pour la première fois par Cerro Tololo[4].
↑Les coordonnées équatorialess données d'Ixion le 22 mai 2001 sont de 16h 16m 06.12s et −19° 13′ 45.6″, ce qui est proche des coordonnées de la constellation Scorpion autour de 17h -40°[4].
↑Dans la convention pour les désignations provisoires de planètes mineures, la première lettre représente le demi-mois de l'année de la découverte, tandis que la deuxième lettre et les chiffres indiquent l'ordre de découverte au sein de ce demi-mois. Dans le cas de 2001 KX76, la première lettre 'K' correspond à la deuxième moitié du mois de mai 2001, tandis que la lettre suivante 'X' indique qu'il s'agit du 23e objet découvert au cours du 77e cycle de découvertes (76 cycles étant achevés). Chaque cycle est composé de 25 lettres représentant les découvertes, d'où 23 + (76 cycles × 25 lettres) = 1,923.
↑Le nom « plutino » provient de la planète naine Pluton, le plus grand objet membre de ce groupe.
↑Les diamètres de Pluton et de Charon sont connues précisément depuis New Horizons à 2 376 km et 1 212 km, respectivement.
↑ a et b(en) R. L. Millis, J. L. Elliot, S. D. Kern et D. J. Osip, « 2001 KX_76 », International Astronomical Union Circular, (lire en ligne, consulté le )
↑ a et b(en) A. Gnadig, E. F. Helin, S. Pravdo et K. J. Lawrence, « 2001 KX76 », Minor Planet Electronic Circulars, vol. 2001-P28, (ISSN1523-6714, lire en ligne, consulté le )
↑(en) George A. Wilkins, The IAU Style Manual, (lire en ligne [PDF]), p. S27.
↑ abc et d(en) J. Licandro, F. Ghinassi et L. Testi, « Infrared spectroscopy of the largest known trans-Neptunian object 2001 KX », Astronomy & Astrophysics, vol. 388, no 1, , L9–L12 (ISSN0004-6361 et 1432-0746, DOI10.1051/0004-6361:20020533, lire en ligne, consulté le )
↑ a et b(en) M. Galiazzo, C. de la Fuente Marcos, R. de la Fuente Marcos et G. Carraro, « Photometry of Centaurs and trans-Neptunian objects: 2060 Chiron (1977 UB), 10199 Chariklo (1997 CU26), 38628 Huya (2000 EB173), 28978 Ixion (2001 KX76), and 90482 Orcus (2004 DW) », Astrophysics and Space Science, (lire en ligne, consulté le )
↑ a et b(en) Philippe Rousselot et J. Petit, « Photometric Study Of 28978 Ixion At Small Phase Angle », American Astronomical Society, DPS meeting #42, (lire en ligne, consulté le )
↑ a et b(en) J. L. Ortiz, P. J. Gutiérrez, V. Casanova et A. Sota, « A study of short term rotational variability in TNOs and Centaurs from Sierra Nevada Observatory », Astronomy & Astrophysics, vol. 407, no 3, , p. 1149–1155 (ISSN0004-6361 et 1432-0746, DOI10.1051/0004-6361:20030972, lire en ligne, consulté le )
↑ abcd et e(en) Stephen E. Levine, Carlos A. Zuluaga, Michael J. Person et Amanda A. Sickafoose, « Occultation of a Large Star by the Large Plutino (28978) Ixion on 2020 October 13 UTC », The Astronomical Journal, vol. 161, no 5, , p. 210 (ISSN0004-6256 et 1538-3881, DOI10.3847/1538-3881/abe76d, lire en ligne, consulté le )
↑ abc et d(en) Anne J. Verbiscer, Paul Helfenstein, Simon B. Porter et Susan D. Benecchi, « The Diverse Shapes of Dwarf Planet and Large KBO Phase Curves Observed from New Horizons », The Planetary Science Journal, vol. 3, no 4, , p. 95 (ISSN2632-3338, DOI10.3847/PSJ/ac63a6, lire en ligne, consulté le )
↑ a et b(en) M. W. Buie, R. L. Millis, L. H. Wasserman et J. L. Elliot, « Procedures, Resources and Selected Results of the Deep Ecliptic Survey », Earth, Moon, and Planets, vol. 92, no 1, , p. 113–124 (ISSN1573-0794, DOI10.1023/B:MOON.0000031930.13823.be, lire en ligne, consulté le )
↑ a et b(en) J. A. Stansberry, D. P. Cruikshank, W. G. Grundy et J. L. Margot, « Albedos, Diameters (and a Density) of Kuiper Belt and Centaur Objects », American Astronomical Society, vol. DPS meeting #37, , p. 52.05 (lire en ligne, consulté le )
↑ abcd et e(en) John Stansberry, Will Grundy, Mike Brown et Dale Cruikshank, « Physical Properties of Kuiper Belt and Centaur Objects: Constraints from Spitzer Space Telescope », The Solar System beyond Neptune, (arXivastro-ph/0702538, lire en ligne, consulté le )
↑(en) Michael Mommert, « Remnant Planetesimals and their Collisional Fragments: Physical Characterization from Thermal–Infrared Observations », Freie Universität Berlin, (DOI10.17169/refubium-6484, lire en ligne, consulté le )
↑ a et b(en) Michael Mommert, A. W. Harris, C. Kiss et A. Pal, « TNOs are Cool: A survey of the trans-Neptunian region V. Physical characterization of 18 Plutinos using Herschel PACS observations », Astronomy & Astrophysics, vol. 541, , A93 (ISSN0004-6361 et 1432-0746, DOI10.1051/0004-6361/201118562, lire en ligne, consulté le )
↑ a et b(en) S. Marchi, M. Lazzarin, S. Magrin et C. Barbieri, « Visible spectroscopy of the two largest known trans–Neptunian objects: Ixion and Quaoar », Astronomy & Astrophysics, vol. 408, no 3, , L17–L19 (ISSN0004-6361 et 1432-0746, DOI10.1051/0004-6361:20031142, lire en ligne, consulté le )
↑(en) M. A. Barucci, M. E. Brown, J. P. Emery et F. Merlin, The Solar System Beyond Neptune, University of Arizona Press, (lire en ligne [PDF]), « Composition and Surface Properties of Transneptunian Objects and Centaurs », p. 143–160
↑ a et b(en) F. E. DeMeo, S. Fornasier, M. A. Barucci et D. Perna, « Visible and near-infrared colors of Transneptunian objects and Centaurs from the second ESO large program », Astronomy & Astrophysics, vol. 493, no 1, , p. 283–290 (ISSN0004-6361 et 1432-0746, DOI10.1051/0004-6361:200810561, lire en ligne, consulté le )
↑(en) O. Lorin et P. Rousselot, « Search for cometary activity in three Centaurs [(60558) Echeclus, 2000 FZ53 and 2000 GM137] and two trans-Neptunian objects [(29981) 1999 TD10 and (28978) Ixion]* », Monthly Notices of the Royal Astronomical Society, vol. 376, no 2, , p. 881–889 (ISSN0035-8711 et 1365-2966, DOI10.1111/j.1365-2966.2007.11487.x, lire en ligne, consulté le )
↑(en) Gonzalo Tancredi, « Physical and dynamical characteristics of icy “dwarf planets” (plutoids) », Proceedings of the International Astronomical Union, vol. 5, no S263, , p. 173–185 (ISSN1743-9221 et 1743-9213, DOI10.1017/S1743921310001717, lire en ligne, consulté le )
↑(en) W. M. Grundy, K. S. Noll, M. W. Buie et S. D. Benecchi, « The mutual orbit, mass, and density of transneptunian binary Gǃkúnǁ'hòmdímà (229762 2007 UK126) », Icarus, the Trans-Neptunian Solar System, vol. 334, , p. 30–38 (ISSN0019-1035, DOI10.1016/j.icarus.2018.12.037, lire en ligne, consulté le )
↑ a et b(en) Ashley Gleaves, Randall Allen, Adam Tupis et John Quigley, « A Survey of Mission Opportunities to Trans-Neptunian Objects - Part II, Orbital Capture », AIAA/AAS Astrodynamics Specialist Conference, American Institute of Aeronautics and Astronautics, (ISBN978-1-62410-182-3, DOI10.2514/6.2012-5066, lire en ligne, consulté le )
↑ a et b(en) Amanda M. Zangari, Tiffany J. Finley, S. Alan Stern et Mark B. Tapley, « Return to the Kuiper Belt: Launch Opportunities from 2025 to 2040 », Journal of Spacecraft and Rockets, vol. 56, no 3, , p. 919–930 (ISSN0022-4650 et 1533-6794, DOI10.2514/1.A34329, lire en ligne, consulté le )
County in Texas, United States County in TexasBee CountyCountyThe Bee County Courthouse in Beeville was built in 1913.Location within the U.S. state of TexasTexas's location within the U.S.Coordinates: 28°25′N 97°44′W / 28.42°N 97.74°W / 28.42; -97.74Country United StatesState TexasFounded1858Named forBarnard E. Bee, Sr.SeatBeevilleLargest cityBeevilleArea • Total880 sq mi (2,300 km2) • Land880 sq mi (2...
Group of compounds found in meat and dairy from ruminants Rumenic acid, an example of conjugated linoleic acid Conjugated linoleic acids (CLA) are a family of isomers of linoleic acid. In principle, 28 isomers are possible. CLA is found mostly in the meat and dairy products derived from ruminants. The two C=C double bonds are conjugated (i.e., separated by a single bond). CLAs can be either cis-fats or trans-fats. CLA is marketed as a dietary supplement on the basis of its claimed health bene...
Untuk Parlemen Israel, lihat Knesset. Sinagoge di Kota Surabaya, Jawa Timur. Sinagoge Yaakov Ohel Synagog di Manado, Sulawesi Utara. Orang Yahudi Agama Yahudi Agama Tuhan Allah dalam Yudaisme Dasar Iman Yahudi Kaballah Hari raya Doa Halakha Mitzvot (Daftar: 613) Rabi Sinagoge Pembacaan gulungan Taurat Minhag/Kebiasaan Tzedakah Teks Tanakh: Taurat Nevi'im Ketuvim Literatur Rabinik Talmud Mishnah Gemara Etnis Ashkenazi Sefardim Mizrahi Beta Israel Penduduk (Daftar) Israel AS Rusia/Uni Soviet Sp...
Association football club in Algeria Football clubCABBAFull nameChabab Ahly Bordj Bou ArréridjNickname(s)The Yellow LocustsFounded1931; 93 years ago (1931)Ground20 August 1955 StadiumCapacity25,000LeagueLigue Régional I2022–23Inter-Régions Division, Group Centre-east, 16th (relegated) Home colours Away colours Current season Chabab Ahly Bordj Bou Arréridj (Arabic: شباب أهلي برج بوعريريج), known as CA Bord Bou Arréridj or simply CABBA for short, is a...
Character in the Marvel Cinematic Universe Ant-Man (Marvel Cinematic Universe) redirects here. For the 2015 film, see Ant-Man (film). For the original Ant-Man, see Hank Pym (Marvel Cinematic Universe). Fictional character Scott LangMarvel Cinematic Universe characterPaul Rudd as Scott Lang in Ant-Man and the Wasp (2018)First appearanceAnt-Man (2015)Based onAnt-Manby David MichelinieBob LaytonJohn ByrneAdapted by Edgar Wright Joe Cornish Adam McKay Paul Rudd Portrayed by Paul Rudd Jackson Dunn...
1992 single by Sir Mix-A-Lot Not to be confused with Baby Got Black. Baby Got BackSingle by Sir Mix-a-Lotfrom the album Mack Daddy B-sideCake Boy/You Can't SlipReleasedMay 7, 1992 (1992-05-07)Recorded1991Genre Miami bass Length4:21LabelDef AmericanRepriseSongwriter(s) Sir Mix-a-Lot Producer(s) Rick Rubin[a] Sir Mix-a-Lot Sir Mix-a-Lot singles chronology One Time's Got No Case (1991) Baby Got Back (1992) Swap Meet Louie (1992) Music videoBaby Got Back on YouTubeAudio sam...
Este artículo se refiere o está relacionado con una infraestructura de transporte público futura o en desarrollo. La información de este artículo puede cambiar frecuentemente. Por favor, no agregues datos especulativos y recuerda colocar referencias a fuentes fiables para dar más detalles. Metro de Astaná LugarUbicación Astaná, Kazajistán KazajistánDescripciónTipo MetroCaracterísticas técnicasLongitud red 45 kilómetros (2017)Estaciones 18Velocidad máxima 80 km/h (50 mi/h)Expl...
San Francisco heritage streetcar line E EmbarcaderoStreetcar 1010 at Brannan station in 2017.OverviewStatusSuspended[1]OwnerSan Francisco Municipal Transportation Agency (SFMTA)LocaleSan Francisco, CaliforniaTerminiJones and Beach4th and KingStations18ServiceTypeHeritage streetcarSystemSan Francisco Municipal RailwayOperator(s)San Francisco Municipal RailwayRolling stockDouble-ended historic Muni streetcarsHistoryOpenedJanuary 10, 1998 (shuttle service)August 31, 2008 (trial service)&...
Pour les articles homonymes, voir Maison Bonaparte et Lucien Bonaparte (archidiacre). LucienLuciano Lucien Bonaparte par François-Xavier Fabre Titre Prince de Canino 31 août 1814 – 29 juin 1840(25 ans, 9 mois et 29 jours) Prédécesseur Création du titre Successeur Charles-Lucien Bonaparte Ministre français de l'Intérieur 24 décembre 1799 – 7 novembre 1800(10 mois et 14 jours) Prédécesseur Pierre-Simon de Laplace Successeur Jean-Antoine Chaptal Président...
Darol FromanDr. Darol K. Froman, Technical Associate Director, Los Alamos Scientific Laboratory in 1953Born(1906-10-23)October 23, 1906Harrington, WashingtonDiedSeptember 11, 1997(1997-09-11) (aged 90)Santa Fe, New MexicoCitizenshipAmericanAlma materUniversity of Alberta (B.Sc. 1926, M.Sc. 1927) University of Chicago (Ph.D. 1930)Known forDeputy Director of Los Alamos LaboratoryAwardsa wide range of patents for electrical components and batteriesScientific careerFieldsNuclear p...
Gli statuti dei mercanti dell'oro, dell'argento e della seta di Milano (Statuta mercatorum auri, argenti et serici Mediolani), 1610 La vita economica di Milano, durante l'età comunale e soprattutto all'epoca del Ducato di Milano, è stata dominata dalle corporazioni di arti e mestieri. Alcune vie della città conservano tuttora il nome della corporazione che vi svolgeva la propria attività, come via Spadari, via Armorari, via Speronari, via Mercanti, via Orefici, via Cappellari e via Pattar...
Zoológico del parque MitchellMitchell Park Zoo Vista del ZoológicoFecha de inauguración 1910Localización Durban, SudáfricaÁrea haCoordenadas 29°49′32″S 31°00′41″E / -29.825487, 31.01132[editar datos en Wikidata] El Zoológico del parque Mitchell (en inglés: Mitchell Park Zoo; también conocido como Mitchell Park o Parque de Mitchell) está situado en el barrio de Morningside de Durban, Sudáfrica, siendo el único zoológico de esa ciudad.[1]...
English politician and author (c.1538–1599) Reginald Scott redirects here. For the Canadian author, see R.T.M. Scott. Reginald ScotReginald ScotBorn1538EnglandDied9 October 1599(1599-10-09) (aged 60–61)EnglandOccupation(s)Author, politicianKnown forThe Discoverie of Witchcraft Reginald Scot (or Scott) (c. 1538 – 9 October 1599) was an Englishman and Member of Parliament, the author of The Discoverie of Witchcraft, which was published in 1584. It was written against ...
This is an archive of past discussions. Do not edit the contents of this page. If you wish to start a new discussion or revive an old one, please do so on the current talk page. Archive 20 ← Archive 22 Archive 23 Archive 24 Article for the cowboys-lions game? Should an article be made for the referee debacle in the cowboys-Lions game? It could be called Decker Reported Eligible, similar to the Dez Caught It article, or the Fail Mary article. It did receive coverage 8 days after the inci...
Spanish philosopher, poet and physician (c.1075–1141) Judah HaleviStatue in Caesarea, Israel.Bornc. 1075Toledo or Tudela, Al-AndalusDied1141 (66 years)Jerusalem, Kingdom of JerusalemNotable workSefer ha-Kuzari[1]EraMedieval philosophyRegionJewish philosophyMain interestsReligious philosophy Judah Halevi (also Yehuda Halevi or ha-Levi; Hebrew: יהודה הלוי and Judah ben Shmuel Halevi יהודה בן שמואל הלוי; Arabic: يهوذا اللاوي, romanized:...
Title used by some republican states This article is about an official title used by several countries. For the ideological concept and form of government, see People's democracy (Marxism–Leninism). For the album by the Revolutionary Ensemble, see The People's Republic (album). For the novel by Robert Muchamore, see People's Republic (novel). For the current largest people's republic, see China. Map of states using the name people's republic: Current Former Part of th...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Transylvanianism – news · newspapers · books · scholar · JSTOR (February 2017) (Learn how and when to remove this message) Ethnic map of Romania according to the 2011 Romanian census. Transylvania is predominantly inhabited by Romanians and Hungarians. Transyl...
For other people named Andrew Weir, see Andrew Weir (disambiguation). Andrew Weir, 1st Baron Inverforth, PC (24 April 1865 – 17 September 1955) created and headed the firm of Andrew Weir and Co. shipowners of Glasgow. In the First World War he served as a minister in the coalition government: he was Surveyor General of Supplies[1][2] from 1917 to 1919, and Minister of Munitions from 1919 to 1921. Life Andrew Weir was born in Kirkcaldy, Fife the eldest son of William Weir and...