Maitohappokäyttämistä on perinteinen ruoansäilömismenetelmä esimerkiksi piimän ja hapankaalin valmistuksessa. Bakteerit muuntavat siinä sokeria maitohapoksi, joka lisää ruokien happamuutta. Hapattaminen muuttaa maun lisäksi myös ravintoarvoja.
Maitohappokäymisessä pyruvaatti pelkistyy ihmisillä ja monilla eläimillä L-laktaattidehydrogenaasilla (LDH) L-maitohapoksi. Tämä on solujen olosuhteissa deprotonoitu anioni, L-laktaatti. Myös pyruvaatti on anionina (toisin kuin alla olevassa reaktiossa). NADH hapettuu reaktiossa NAD+:ksi. Tasapainoreaktio on L-laktaatin ja NAD+:n suuntaan, sillä reaktio on hyvin eksergoninen (energiallisesti suotuisa):[1]
+
NADH
+
H+
+
NAD+
pyruvaatti
LDH
L-maitohappo
Mm. joissain bakteereissa päätuotteena saadaan D-laktaatti-enantiomeeriä D-laktaattidehydrogenaasilla.[3]
Pyruvaatti saadaan usein glykolyysistä, jossa 1 glukoosi hajoaa 2:ksi pyruvaatiksi usean reaktion kautta. Ihmisten ja muiden eläinten solujen glykolyysin 6. vaiheessa glyseraldehydi-3-fosfaatti muuntuu 1,3-bisfosfoglyseraatiksi. Samalla 1 NAD+ pelkistyy NADH:ksi.[4] NADH hapettuu ihmisillä ja joillain muilla eliöillä normaalisti mitokondrioidenoksidatiivisessa fosforylaatiossa takaisin NAD+:ksi. Näin ei voi käydä liian vähähappisissa oloissa. Siksi NADH hapettuu NAD+:ksi maitohappokäymisessä. Tämä tapahtuu jotta NAD+ ei lopu, ja solulle energiaa tuottava glykolyysi voi jatkua taas vähintään 6. vaiheeseensa asti. Maitohappokäyminen ei siis tuota energiaa ATP:n muodossa.[1]
Glykolyysissä saadaan 2 ATP:tä per glukoosi. Aerobisessa eli happea kuluttavassa soluhengityksessä saadaan noin 32 ATP:tä per glukoosi. Maitohappokäymisellä toimivan solun ATP:n tuotto on siis noin 16 kertaa tehottomampaa kuin aerobisella soluhengityksellä, sillä glykolyysin ja maitohappokäymisen nettoreaktio on:[2]
Maitohappokäymistä tapahtuu mm. maitohappobakteereissa ja lihassoluissa rasittavassa liikunnassa, jossa lihasten hapen kulutus ylittää niihin hengittämällä saadun hapen määrän.[1] Käymistä tapahtuu myös monissa veden alle joutuneissa kasveissa.[5] Vähähappisuus ei ole edellytys: käymistä tapahtuu myös happirikkaissa olosuhteissa, kuten joissain syöpäsoluissa. Tällöin on kyse voi olla ns. Warburg-ilmiöstä.[6] Reaktio saattaa tapahtua myös jos solu ei pysty aerobiseen soluhengitykseen. Esim. monien eläinten kuten ihmisten punasoluissa ei ole mitokondrioita, joten ne tuottavat verensokerista energiaa maitohappokäymisellä.[1] Mm. lintujen punasoluissa tosin on toiminnalliset mitokondriot.[7]
Homofermentaatiossa kuusihiilisistä sokereista (heksooseista) muodostuu maitohappokäymisellä lähinnä vain L- tai D-maitohappoa. Heterofermentaatiossa heksooseista muodostuu runsaasti muitakin aineita kuten etikkahappoa, mannitolia ja etanolia esim. samanaikaisen etanolikäymisen kautta. Termejä käytetään jakamaan esim. maitohappobakteereita homo- ja heterofermentatiivisiin.[8]
Mm. ihmisillä lihaksissa liikunnassa muodostunut laktaatti poistuu pääosin Corin sykliin: lihasten laktaatti siirtyy vereen ja sieltä maksaan, jossa se muuntuu pääosin glukoosiksi. Tämä palaa verensokeriksi, joka voi muuntua lihaksissa taas laktaatiksi. Sykli toistuu. Laktaatin kertyminen vereen voi aiheuttaa maitohappoasidoosin – tätä ilmenee epätavallisissa tilanteissa, kuten joissain sairauksissa ja myrkytyksissä.[9]
Hapatus ruoan valmistuksessa
Ruoan hapattaminen tehdään lisäämällä raaka-aineeseen tarkoitukseen sopiva maitohappobakteerikanta. Bakteerit käyttävät ravinnokseen raaka-aineen sokereita ja erittävät maitohappoa, joka happamoi ruuan. Bakteerien kasvua ja sen vaikutuksena maitohapon muodostumista säädellään kontrolloimalla lämpötilaa ja hapensaantia. Kun ruoka on tarpeeksi hapan, siinä eivät elä ihmiselle haitalliset bakteerilajit. Maitotuotteissa hapattaminen on maun lisäksi merkittävä myös rakenteen muodostamisessa.[10]
Juutalaisen pesah-juhlan aikana on juutalaisilta tavallinen hapatettu leipä ankarasti kielletty. Sen sijaan tulee syödä happamatonta ja maustamatonta matsa-leipää, jota ei ole kohotettu.
↑LC McDonald et al: A Differential Medium for the Enumeration of Homofermentative and Heterofermentative Lactic Acid Bacteria. Applied and Environmental Microbiology, kesäkuu 1987, 53. vsk, nro 6, s. 1382–1384. PubMed:16347367ISSN 0099-2240Artikkelin verkkoversio.