Sinc function

In mathematics, physics and engineering, the sinc function, denoted by sinc(x), has two forms, normalized and unnormalized.[1]

Sinc
Part of the normalized and unnormalized sinc function shown on the same scale
Part of the normalized sinc (blue) and unnormalized sinc function (red) shown on the same scale
General information
General definition
Motivation of inventionTelecommunication
Date of solution1952
Fields of applicationSignal processing, spectroscopy
Domain, codomain and image
Domain
Image
Basic features
ParityEven
Specific values
At zero1
Value at +∞0
Value at −∞0
Maxima1 at
Minima at
Specific features
Root
Related functions
Reciprocal
Derivative
Antiderivative
Series definition
Taylor series
The sinc function as audio, at 2000 Hz (±1.5 seconds around zero)

In mathematics, the historical unnormalized sinc function is defined for x ≠ 0 by

Alternatively, the unnormalized sinc function is often called the sampling function, indicated as Sa(x).[2]

In digital signal processing and information theory, the normalized sinc function is commonly defined for x ≠ 0 by

In either case, the value at x = 0 is defined to be the limiting value for all real a ≠ 0 (the limit can be proven using the squeeze theorem).

The normalization causes the definite integral of the function over the real numbers to equal 1 (whereas the same integral of the unnormalized sinc function has a value of π). As a further useful property, the zeros of the normalized sinc function are the nonzero integer values of x.

The normalized sinc function is the Fourier transform of the rectangular function with no scaling. It is used in the concept of reconstructing a continuous bandlimited signal from uniformly spaced samples of that signal.

The only difference between the two definitions is in the scaling of the independent variable (the x axis) by a factor of π. In both cases, the value of the function at the removable singularity at zero is understood to be the limit value 1. The sinc function is then analytic everywhere and hence an entire function.

The function has also been called the cardinal sine or sine cardinal function.[3][4] The term sinc /ˈsɪŋk/ was introduced by Philip M. Woodward in his 1952 article "Information theory and inverse probability in telecommunication", in which he said that the function "occurs so often in Fourier analysis and its applications that it does seem to merit some notation of its own",[5] and his 1953 book Probability and Information Theory, with Applications to Radar.[6][7] The function itself was first mathematically derived in this form by Lord Rayleigh in his expression (Rayleigh's formula) for the zeroth-order spherical Bessel function of the first kind.

Properties

The local maxima and minima (small white dots) of the unnormalized, red sinc function correspond to its intersections with the blue cosine function.

The zero crossings of the unnormalized sinc are at non-zero integer multiples of π, while zero crossings of the normalized sinc occur at non-zero integers.

The local maxima and minima of the unnormalized sinc correspond to its intersections with the cosine function. That is, sin(ξ)/ξ = cos(ξ) for all points ξ where the derivative of sin(x)/x is zero and thus a local extremum is reached. This follows from the derivative of the sinc function:

The first few terms of the infinite series for the x coordinate of the n-th extremum with positive x coordinate are where and where odd n lead to a local minimum, and even n to a local maximum. Because of symmetry around the y axis, there exist extrema with x coordinates xn. In addition, there is an absolute maximum at ξ0 = (0, 1).

The normalized sinc function has a simple representation as the infinite product:

The cardinal sine function sinc(z) plotted in the complex plane from -2-2i to 2+2i
The cardinal sine function sinc(z) plotted in the complex plane from -2-2i to 2+2i

and is related to the gamma function Γ(x) through Euler's reflection formula:

Euler discovered[8] that and because of the product-to-sum identity[9]

Domain coloring plot of sinc z = sin z/z

Euler's product can be recast as a sum

The continuous Fourier transform of the normalized sinc (to ordinary frequency) is rect(f): where the rectangular function is 1 for argument between −1/2 and 1/2, and zero otherwise. This corresponds to the fact that the sinc filter is the ideal (brick-wall, meaning rectangular frequency response) low-pass filter.

This Fourier integral, including the special case is an improper integral (see Dirichlet integral) and not a convergent Lebesgue integral, as

The normalized sinc function has properties that make it ideal in relationship to interpolation of sampled bandlimited functions:

  • It is an interpolating function, i.e., sinc(0) = 1, and sinc(k) = 0 for nonzero integer k.
  • The functions xk(t) = sinc(tk) (k integer) form an orthonormal basis for bandlimited functions in the function space L2(R), with highest angular frequency ωH = π (that is, highest cycle frequency fH = 1/2).

Other properties of the two sinc functions include:

  • The unnormalized sinc is the zeroth-order spherical Bessel function of the first kind, j0(x). The normalized sinc is j0x).
  • where Si(x) is the sine integral,
  • λ sinc(λx) (not normalized) is one of two linearly independent solutions to the linear ordinary differential equation The other is cos(λx)/x, which is not bounded at x = 0, unlike its sinc function counterpart.
  • Using normalized sinc,
  • The following improper integral involves the (not normalized) sinc function:

Relationship to the Dirac delta distribution

The normalized sinc function can be used as a nascent delta function, meaning that the following weak limit holds:

This is not an ordinary limit, since the left side does not converge. Rather, it means that

for every Schwartz function, as can be seen from the Fourier inversion theorem. In the above expression, as a → 0, the number of oscillations per unit length of the sinc function approaches infinity. Nevertheless, the expression always oscillates inside an envelope of ±1/πx, regardless of the value of a.

This complicates the informal picture of δ(x) as being zero for all x except at the point x = 0, and illustrates the problem of thinking of the delta function as a function rather than as a distribution. A similar situation is found in the Gibbs phenomenon.

Summation

All sums in this section refer to the unnormalized sinc function.

The sum of sinc(n) over integer n from 1 to equals π − 1/2:

The sum of the squares also equals π − 1/2:[10][11]

When the signs of the addends alternate and begin with +, the sum equals 1/2:

The alternating sums of the squares and cubes also equal 1/2:[12]

Series expansion

The Taylor series of the unnormalized sinc function can be obtained from that of the sine (which also yields its value of 1 at x = 0):

The series converges for all x. The normalized version follows easily:

Euler famously compared this series to the expansion of the infinite product form to solve the Basel problem.

Higher dimensions

The product of 1-D sinc functions readily provides a multivariate sinc function for the square Cartesian grid (lattice): sincC(x, y) = sinc(x) sinc(y), whose Fourier transform is the indicator function of a square in the frequency space (i.e., the brick wall defined in 2-D space). The sinc function for a non-Cartesian lattice (e.g., hexagonal lattice) is a function whose Fourier transform is the indicator function of the Brillouin zone of that lattice. For example, the sinc function for the hexagonal lattice is a function whose Fourier transform is the indicator function of the unit hexagon in the frequency space. For a non-Cartesian lattice this function can not be obtained by a simple tensor product. However, the explicit formula for the sinc function for the hexagonal, body-centered cubic, face-centered cubic and other higher-dimensional lattices can be explicitly derived[13] using the geometric properties of Brillouin zones and their connection to zonotopes.

For example, a hexagonal lattice can be generated by the (integer) linear span of the vectors

Denoting one can derive[13] the sinc function for this hexagonal lattice as

This construction can be used to design Lanczos window for general multidimensional lattices.[13]

Sinhc

Some authors, by analogy, define the hyperbolic sine cardinal function.[14][15][16]

See also

References

  1. ^ Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), "Numerical methods", NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248..
  2. ^ Singh, R. P.; Sapre, S. D. (2008). Communication Systems, 2E (illustrated ed.). Tata McGraw-Hill Education. p. 15. ISBN 978-0-07-063454-1. Extract of page 15
  3. ^ Weisstein, Eric W. "Sinc Function". mathworld.wolfram.com. Retrieved 2023-06-07.
  4. ^ Merca, Mircea (2016-03-01). "The cardinal sine function and the Chebyshev–Stirling numbers". Journal of Number Theory. 160: 19–31. doi:10.1016/j.jnt.2015.08.018. ISSN 0022-314X. S2CID 124388262.
  5. ^ Woodward, P. M.; Davies, I. L. (March 1952). "Information theory and inverse probability in telecommunication" (PDF). Proceedings of the IEE - Part III: Radio and Communication Engineering. 99 (58): 37–44. doi:10.1049/pi-3.1952.0011.
  6. ^ Poynton, Charles A. (2003). Digital video and HDTV. Morgan Kaufmann Publishers. p. 147. ISBN 978-1-55860-792-7.
  7. ^ Woodward, Phillip M. (1953). Probability and information theory, with applications to radar. London: Pergamon Press. p. 29. ISBN 978-0-89006-103-9. OCLC 488749777.
  8. ^ Euler, Leonhard (1735). "On the sums of series of reciprocals". arXiv:math/0506415.
  9. ^ Luis Ortiz-Gracia; Cornelis W. Oosterlee (2016). "A highly efficient Shannon wavelet inverse Fourier technique for pricing European options". SIAM J. Sci. Comput. 38 (1): B118–B143. Bibcode:2016SJSC...38B.118O. doi:10.1137/15M1014164. hdl:2072/377498.
  10. ^ "Advanced Problem 6241". American Mathematical Monthly. 87 (6). Washington, DC: Mathematical Association of America: 496–498. June–July 1980. doi:10.1080/00029890.1980.11995075.
  11. ^ Robert Baillie; David Borwein; Jonathan M. Borwein (December 2008). "Surprising Sinc Sums and Integrals". American Mathematical Monthly. 115 (10): 888–901. doi:10.1080/00029890.2008.11920606. hdl:1959.13/940062. JSTOR 27642636. S2CID 496934.
  12. ^ Baillie, Robert (2008). "Fun with Fourier series". arXiv:0806.0150v2 [math.CA].
  13. ^ a b c Ye, W.; Entezari, A. (June 2012). "A Geometric Construction of Multivariate Sinc Functions". IEEE Transactions on Image Processing. 21 (6): 2969–2979. Bibcode:2012ITIP...21.2969Y. doi:10.1109/TIP.2011.2162421. PMID 21775264. S2CID 15313688.
  14. ^ Ainslie, Michael (2010). Principles of Sonar Performance Modelling. Springer. p. 636. ISBN 9783540876625.
  15. ^ Günter, Peter (2012). Nonlinear Optical Effects and Materials. Springer. p. 258. ISBN 9783540497134.
  16. ^ Schächter, Levi (2013). Beam-Wave Interaction in Periodic and Quasi-Periodic Structures. Springer. p. 241. ISBN 9783662033982.

Read other articles:

Eros DjarotEros Djarot pada tahun 2021LahirSoegeng Rahardjo Djarot22 Juli 1950 (umur 73)Lebak, Banten, IndonesiaKebangsaanIndonesiaNama lainEros DjarotPekerjaanBudayawanSutradaraPencipta laguPenulis naskahPolitikusTahun aktif1965–sekarangPartai politik Partai Demokrasi Indonesia (1983–1999) Partai Demokrasi Indonesia Perjuangan (1999–2002) Partai Nasional Benteng Kerakyatan Indonesia (2002–2009) Suami/istriDewi Triyadi SurianegaraAnak2Kerabat Slamet Rahardjo (kakak) He...

 

 

Italian theoretical physicist and professor This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Riccardo Rattazzi – news · newspapers · books · scholar · JSTOR (July 2023) (Learn how and when to remove thi...

 

 

ASD Calcio PomiglianoCalcio Il Pomi, Granata Segni distintivi Uniformi di gara Casa Trasferta Colori sociali Granata Dati societari Città Pomigliano d'Arco Nazione  Italia Confederazione UEFA Federazione FIGC Campionato Eccellenza Campania Fondazione 1920 Rifondazione1951Rifondazione1960Rifondazione1995 Presidente Raffaele Pipola Allenatore Gugliemo Tudisco Stadio Ugo Gobbato(1.600 posti) Palmarès Trofei nazionali 1 Coppe Italia Serie D Si invita a seguire il modello di voce Il Pomigl...

La migration LGBT est l'ensemble des déplacements de personnes lesbiennes, gays, bisexuelles et transgenres (LGBT) à l'échelle mondiale ou nationale, souvent motivé par le désir d'échapper à la discrimination ou aux traitements préjudiciables liés à leur orientation sexuelle ou identité de genre. À l'échelle internationale, de nombreuses personnes LGBT cherchent à quitter des régions où la discrimination est prévalente pour s'installer dans des zones plus tolérantes[1]. Cont...

 

 

Pierre-Étienne Monnot (Orchamps-Vennes, 9 agosto 1657 – Roma, 24 agosto 1733) è stato uno scultore francese. Pierre-Étienne Monnot,Scultura marmorea raffigurante San Pietro, Basilica di San Giovanni in Laterano Originario della Franca Contea, si stabilì a Roma dal 1687 fino alla fine dei suoi giorni. Artista illustre, caratterizzava il suo lavoro un idioma tardo-barocco gradito ai clienti internazionali. Nelle fonti italiane si trova spesso menzionato come Pietro Stefano Monnot, version...

 

 

Bahasa SumbaDituturkan diIndonesiaWilayah  Nusa Tenggara Timur EtnisSumbaPenutur3.240 (2020) Rumpun bahasaMelayu-Polinesia MP Tengah-TimurMP TengahBima-SumbaBahasa Sumba Kode bahasaISO 639-1-ISO 639-2-ISO 639-3sumQIDQ85804036  Portal Bahasa Sunting kotak info • L • B • PWBantuan penggunaan templat ini Cari artikel bahasa  Cari berdasarkan kode ISO 639 (Uji coba)  Kolom pencarian ini hanya didukung oleh beberapa antarmuka Halaman bahasa acak Pulau ...

British transhumanist David PearcePearce in 2013BornApril 1959 (age 64–65)Alma materBrasenose College, Oxford[1]OrganisationHumanity+Known forThe Hedonistic Imperative (1995)MovementTranshumanism, veganismWebsitewww.hedweb.com David Pearce (born April 1959)[2] is a British transhumanist philosopher.[3][4][5] He is the co-founder of the World Transhumanist Association, currently rebranded and incorporated as Humanity+.[6]...

 

 

Questa voce o sezione sull'argomento chiese del Veneto non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Chiesa di San SamueleLa facciata e il campanileStato Italia RegioneVeneto LocalitàVenezia Coordinate45°26′01″N 12°19′41.84″E / 45.43361°N 12.32829°E45.43361; 12.32829Coordinate: 45°26′01″N 12°19′41.84″E...

 

 

1957 compilation album by Pat BoonePat's Great HitsCompilation album by Pat BooneReleased1957GenrePopLabelDotPat Boone compilation album chronology Pat's Great Hits(1957) Pat Boone Sings(1959) Professional ratingsReview scoresSourceRatingBillboardpositive (Spotlight pick)[1] Pat's Great Hits is the first greatest-hits album by Pat Boone.[2] It was released in 1957 on Dot Records.[1][3] Track listing Side oneNo.TitleLength1.Love Letters in the Sand2:122....

تحتاج هذه المقالة إلى الاستشهاد بمصادر إضافية لتحسين وثوقيتها. فضلاً ساهم في تطوير هذه المقالة بإضافة استشهادات من مصادر موثوق بها. من الممكن التشكيك بالمعلومات غير المنسوبة إلى مصدر وإزالتها. (أبريل 2019)Learn how and when to remove this message تقطعت بهم السبل الهجر العاطفي (بالإنجليزية: Emoti...

 

 

نقش النمارةمعلومات عامةالبداية 328 (غريغوري) المكان Room 314 (en) المالك الدولة الفرنسية لغة العمل أو لغة الاسم العربية المواد المستخدمة بازلت المجموعة Department of Near Eastern Antiquities of the Louvre (en) (1903 – ) نظام الكتابة أبجدية نبطية مكان الاكتشاف Namara (en) طريقة التصنيع نقش[1] الطول 173 سنتيمتر&#...

 

 

2021 financial markets event In January 2021, a short squeeze of the stock of the American video game retailer GameStop and other securities took place, causing major financial consequences for certain hedge funds and large losses for short sellers. Approximately 140 percent of GameStop's public float had been sold short, and the rush to buy shares to cover those positions as the price rose caused it to rise even further. The short squeeze was initially and primarily triggered by users of th...

Brass instrument Trumpeter redirects here. For other uses, see Trumpeter (disambiguation) and Trumpet (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Trumpet – news · newspapers · books · scholar · JSTOR (October 2019) (Learn how and when to remove this message) TrumpetTrumpet in B♭B...

 

 

Chabad school Part of a series onChabad Rebbes Shneur Zalman of Liadi (Alter Rebbe) Dovber Schneuri (Mitteler Rebbe) Menachem M. Schneersohn (Tzemach Tzedek) Shmuel Schneersohn (Maharash) Sholom Dovber Schneersohn (Rashab) Yosef Yitzchak Schneersohn (Rayatz) Menachem M. Schneerson (the Rebbe) Places and landmarks Crown Heights 770 Chabad library JCM Ohel Kfar Chabad Lyubavichi Nariman House Shikun Chabad Holidays 1, 10, 19 Kislev 10, 22 Shvat 11 Nissan 3, 12–13 Tammuz Organizations Aguch Al...

 

 

Long Island Rail Road station in Nassau County, New York WantaghSouth track at Wantagh station as an eastbound M7 train arrivesGeneral informationLocationWantagh & Railroad AvenuesWantagh, New YorkCoordinates40°40′23″N 73°30′33″W / 40.672937°N 73.509098°W / 40.672937; -73.509098Owned byLong Island Rail RoadLine(s)Montauk BranchDistance25.9 mi (41.7 km) from Long Island City[1]Platforms1 island platformTracks2Connections Nassau Inter-Co...

Tebing Moher di Irlandia Tebing atau cenuram adalah formasi bebatuan yang menjulang secara vertikal. Tebing terbentuk akibat dari erosi. Tebing umumnya ditemukan di daerah pantai, pegunungan dan sepanjang sungai. Tebing umumnya dibentuk oleh bebatuan yang tahan terhadap proses erosi dan cuaca.[1] Lihat pula Tebing burung Referensi ^ Society, National Geographic (2013-03-04). cliff. National Geographic Society (dalam bahasa Inggris). Diakses tanggal 2020-12-30.  Wikimedia Commons ...

 

 

تي في لاند   معلومات عامة المالك شبكة فياكوم الأعلامية تاريخ التأسيس 29 أبريل 1996  البلد الولايات المتحدة اللغة الإنجليزية المقر الرسمي نيويورك  الموقع الرسمي الموقع الرسمي (الإنجليزية)  صفحة فيسبوك tvland  صفحة تويتر TVLand،  وtvland  تعديل مصدري - تعديل   تي في ل�...

 

 

Questa voce o sezione sull'argomento linee ferroviarie non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Como-LeccoStati attraversati Italia InizioComo FineLecco Attivazione1888 GestoreRFI Precedenti gestoriRA (1888-1905)FS (1905-2001) Lunghezza42 km Scartamento1435 mm Elettrificazione3000 V CC (solo tratto Como - P.M. Albate) Ferrovie ...

  关于与「步兵」標題相近或相同的条目页,請見「步兵 (消歧義)」。 战争与軍事 軍事史 史前戰爭 古代戰爭(英语:Ancient warfare) 中世纪战争 近代戰爭(英语:Early modern warfare) 現代戰爭(英语:Modern warfare) 工業戰(英语:Industrial warfare) 第四代戰爭 戰場 陸戰 空戰 海战 認知作戰 資訊情報 資通訊安全 心理战 電磁波段 太空 武器 裝甲部隊 火炮 飛彈 機械化部...

 

 

この項目では、福岡県の食品メーカー(主に即席ラーメンなどを販売)について説明しています。その他の用法については「マルタイ (曖昧さ回避)」をご覧ください。 この記事の出典や参考文献は、一次資料や記事主題の関係者による情報源に頼っています。 信頼できる第三者情報源とされる出典の追加が求められています。出典検索?: マルタイ – ニュー...