Section (category theory)

is a retraction of . is a section of .

In category theory, a branch of mathematics, a section is a right inverse of some morphism. Dually, a retraction is a left inverse of some morphism. In other words, if and are morphisms whose composition is the identity morphism on , then is a section of , and is a retraction of .[1]

Every section is a monomorphism (every morphism with a left inverse is left-cancellative), and every retraction is an epimorphism (every morphism with a right inverse is right-cancellative).

In algebra, sections are also called split monomorphisms and retractions are also called split epimorphisms. In an abelian category, if is a split epimorphism with split monomorphism , then is isomorphic to the direct sum of and the kernel of . The synonym coretraction for section is sometimes seen in the literature, although rarely in recent work.

Properties

Terminology

The concept of a retraction in category theory comes from the essentially similar notion of a retraction in topology: where is a subspace of is a retraction in the topological sense, if it's a retraction of the inclusion map in the category theory sense. The concept in topology was defined by Karol Borsuk in 1931.[2]

Borsuk's student, Samuel Eilenberg, was with Saunders Mac Lane the founder of category theory, and (as the earliest publications on category theory concerned various topological spaces) one might have expected this term to have initially be used. In fact, their earlier publications, up to, e.g., Mac Lane (1963)'s Homology, used the term right inverse. It was not until 1965 when Eilenberg and John Coleman Moore coined the dual term 'coretraction' that Borsuk's term was lifted to category theory in general.[3] The term coretraction gave way to the term section by the end of the 1960s.

Both use of left/right inverse and section/retraction are commonly seen in the literature: the former use has the advantage that it is familiar from the theory of semigroups and monoids; the latter is considered less confusing by some because one does not have to think about 'which way around' composition goes, an issue that has become greater with the increasing popularity of the synonym for .[4]

Examples

In the category of sets, every monomorphism (injective function) with a non-empty domain is a section, and every epimorphism (surjective function) is a retraction; the latter statement is equivalent to the axiom of choice.

In the category of vector spaces over a field K, every monomorphism and every epimorphism splits; this follows from the fact that linear maps can be uniquely defined by specifying their values on a basis.

In the category of abelian groups, the epimorphism ZZ/2Z which sends every integer to its remainder modulo 2 does not split; in fact the only morphism Z/2ZZ is the zero map. Similarly, the natural monomorphism Z/2ZZ/4Z doesn't split even though there is a non-trivial morphism Z/4ZZ/2Z.

The categorical concept of a section is important in homological algebra, and is also closely related to the notion of a section of a fiber bundle in topology: in the latter case, a section of a fiber bundle is a section of the bundle projection map of the fiber bundle.

Given a quotient space with quotient map , a section of is called a transversal.

Bibliography

  • Mac Lane, Saunders (1978). Categories for the working mathematician (2nd ed.). Springer Verlag.
  • Barry, Mitchell (1965). Theory of categories. Academic Press.

See also

Notes

  1. ^ Mac Lane (1978, p.19).
  2. ^ Borsuk, Karol (1931), "Sur les rétractes", Fundamenta Mathematicae, 17: 152–170, doi:10.4064/fm-17-1-152-170, Zbl 0003.02701
  3. ^ Eilenberg, S., & Moore, J. C. (1965). Foundations of relative homological algebra. Memoirs of the American Mathematical Society number 55. American Mathematical Society, Providence: RI, OCLC 1361982. The term was popularised by Barry Mitchell (1965)'s influential Theory of categories.
  4. ^ Cf. e.g., https://blog.juliosong.com/linguistics/mathematics/category-theory-notes-9/

Read other articles:

Idol Star Athletics ChampionshipsGenreOlahragaNegara asalKorea SelatanBahasa asliKoreaJmlh. seri17Rilis asliJaringanMBCRilis25 September 2010 (2010-09-25) –sekarang Idol Star Athletics Championships (Hangul: 아이돌스타 육상 선수권 대회) adalah sebuah acara televisi Korea Selatan yang disiarkan pertama kali pada tahun 2010. Acara tersebut menampilkan para selebritas, terutama penyanyi fan grup idola pop Korea, yang berkompetisi dalam lomba multi-olahraga. Acar...

 

Para protes sedang bersepeda di Prancis. Bersepeda adalah sebuah kegiatan rekreasi atau olahraga, serta merupakan salah satu moda transportasi darat yang menggunakan sepeda. Sepeda pertama kali diperkenalkan pada abad ke-19 Masehi. Banyak penggemar bersepeda yang melakukan kegiatan tersebut di berbagai macam medan, misalnya perbukitan, medan yang terjal maupun hanya sekadar dipedesaan dan perkotaan saja. Orang yang mempergunakan sepeda sebagai moda transportasi rutin juga dapat disebut komute...

 

Otonari no Tenshi-sama ni Itsu no Ma ni ka Dame Ningen ni Sareteita KenSampul volume pertama novel ringan, menampilkan Mahiru Shiinaお隣の天使様にいつの間にか駄目人間にされていた件(Otonari no Tenshi-sama ni Itsu no Ma ni ka Dame Ningen ni Sareteita Ken)GenreKomedi romantis, penggalan kehidupan[1] Seri novelPengarangSaekisanPenerbitShōsetsuka ni NarōTerbit20 Desember 2018 – sekarang Novel ringanPengarangSaekisanIlustratorHazano Kazutake (vol. 1)Hanekoto (vol...

Sankt Wolfgang Lambang kebesaranLetak Sankt Wolfgang di Erding NegaraJermanNegara bagianBayernWilayahOberbayernKreisErdingSubdivisions7 OrtsteilePemerintahan • MayorJakob Schwimmer (CSU)Luas • Total46,32 km2 (1,788 sq mi)Ketinggian tertinggi582 m (1,909 ft)Ketinggian terendah499 m (1,637 ft)Populasi (2013-12-31)[1] • Total4.340 • Kepadatan0,94/km2 (2,4/sq mi)Zona waktuWET/WMPET (UTC+...

 

Mary Gauthier Nazionalità Stati Uniti GenereAmericanaAlternative country Periodo di attività musicale1995 – in attività Album pubblicati9 Sito ufficiale Modifica dati su Wikidata · Manuale Mary Gauthier (New Orleans, 11 marzo 1962) è una cantautrice statunitense di genere alternative country. Indice 1 Biografia 2 Discografia 2.1 Album in studio 2.2 Album dal vivo 2.3 Raccolte 3 Note 4 Altri progetti 5 Collegamenti esterni Biografia Nata in Louisiana, abband...

 

Indian Bird Sanctuary Nal Sarovar Bird SanctuaryShow map of GujaratShow map of IndiaLocationSanand Village, Gujarat, IndiaCoordinates22°46′N 72°02′E / 22.767°N 72.033°E / 22.767; 72.033Area0.120 km2 Ramsar WetlandOfficial nameNalsarovarDesignated24 September 2012Reference no.2078[1] Map Map location – Nal Sarovar Bird Sanctuary Boats leave at sunrise to go bird-watching. Merops orientalis at Nalsarovar Bird Sanctuary Nal Sarovar Bird Sanctua...

Thomas MelvillPortrait of Melville, ca. 1820sMember of the Massachusetts State LegislatureIn office1832 Personal detailsBorn(1751-01-16)January 16, 1751Boston, MassachusettsDiedSeptember 16, 1832(1832-09-16) (aged 81)Boston, MassachusettsResting placeKing's Chapel Burying GroundSpouse Pricilla Scollay ​ ​(m. 1774)​RelationsHerman Melville (grandson)Children11Parent(s)Allan MelvillJean CargillAlma materCollege of New Jersey Thomas Melvill or Thomas Melvi...

 

Espen Hoff Nazionalità  Norvegia Altezza 172 cm Peso 71 kg Calcio Ruolo Attaccante Termine carriera 2016 Carriera Giovanili 199?-1998 Larvik Turn Squadre di club1 1999-2005 Odd Grenland154 (37)2006-2008 Lyn Oslo67 (22)2009-2010 Stabæk46 (6)2010-2016 Start150 (36)[1] Nazionale 1997 Norvegia U-152 (1)1998 Norvegia U-178 (4)1999 Norvegia U-184 (0)2000 Norvegia U-191 (0)2000-2003 Norvegia U-2127 (3)2005-2006 Norvegia2 (0) 1 I due numeri indicano le presenz...

 

Buddhist temple in Beijing, China Fayuan TempleThe Fayuan TempleReligionAffiliationBuddhismLocationLocationBeijingCountryChinaLocation in BeijingGeographic coordinates39°53′02″N 116°21′49″E / 39.88389°N 116.36361°E / 39.88389; 116.36361ArchitectureStyleChinese architectureDate established645Completed1437 (reconstruction) Bronze sculptures at one of its entrances The Fayuan Temple (Chinese: 法源寺; pinyin: Fǎyuán Sì), situated in the southwest ...

Portocomune Porto – Veduta LocalizzazioneStato Portogallo RegioneNord DistrettoPorto AmministrazioneSindacoRui Moreira (Indipendente, appoggiato dal CDS-PP) dal 22-10-2013 TerritorioCoordinate41°09′N 8°38′W / 41.15°N 8.633333°W41.15; -8.633333 (Porto)Coordinate: 41°09′N 8°38′W / 41.15°N 8.633333°W41.15; -8.633333 (Porto) Altitudine104 m s.l.m. Superficie41,66 km² Abitanti240 592[1] (2016) Dens...

 

Untuk wilayah geografis, lihat Matlab (Bangladesh). Artikel ini bukan mengenai MATHLAB. MATLAB MATLAB R2015b di Windows 10Tipeaplikasi, mathematical software dan bahasa pemrograman Versi pertama1984; 40 tahun lalu (1984)Versi stabil R2023b Update 6 (10 Januari 2024) GenreKomputasi numerikLisensiKepemilikan perangkat lunak komersialKarakteristik teknisSistem operasiWindows, macOS, dan Linux[1]Bahasa pemrogramanC, C++, Fortran dan Java Format kodeDaftarMATLAB M-File, Hierarchical D...

 

莫里斯·顾夫·德姆维尔法国总理任期1968年7月10日—1969年6月20日总统夏尔·戴高乐阿兰·波厄(英语:Alain Poher) (代理)前任乔治·蓬皮杜继任雅克·沙邦-戴尔马外交部长任期1958年6月1日—1968年5月30日总统勒内·科蒂夏尔·戴高乐总理米歇尔·德勃雷乔治·蓬皮杜前任勒内·普利文继任米歇尔·德勃雷 个人资料出生1907年1月24日兰斯逝世1999年12月24日(1999歲—12—24)(92歲)巴黎职业�...

Star in the constellation Centaurus Theta Centauri Location of θ Centauri (circled) Observation dataEpoch J2000.0      Equinox J2000.0 Constellation Centaurus Right ascension 14h 06m 40.94752s[1] Declination –36° 22′ 11.8371″[1] Apparent magnitude (V) +2.06[2] Characteristics Spectral type K0 III[3] U−B color index +0.90[2] B−V color index +0.99[2] AstrometryRadi...

 

For the thermodynamics concept, see Work (thermodynamics). The examples and perspective in this article may not include all significant viewpoints. Please improve the article or discuss the issue. (August 2022) (Learn how and when to remove this message) In science studies, boundary-work comprises instances in which boundaries, demarcations, or other divisions between fields of knowledge are created, advocated, attacked, or reinforced. Such delineations often have high stakes involved for the...

 

Not to be confused with 2020 United States Senate election in North Carolina. 2020 North Carolina Senate election ← 2018 November 3, 2020 (2020-11-03) 2022 → All 50 seats in the North Carolina Senate26 (without Lieutenant Governor) seats needed for a majority   Majority party Minority party   Leader Phil Berger Dan Blue Party Republican Democratic Leader since January 1, 2005 March 2, 2014 Leader's seat 30th - Eden 14th - Raleigh Last&...

Cette liste présente les matchs de l'équipe de Curaçao de football par adversaire rencontré[1],[2]. Lorsqu'une rivalité footballistique particulière existe entre Curaçao et un autre pays, une page spécifique est parfois proposée. Sommaire : Haut – A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Sommaire Antigua-et-Barbuda • Aruba • Barbade • Bolivie • Bonaire • Canada • Colombie • Costa Rica • Cuba • Danemark • États-Unis • Grenade • Guadeloupe •...

 

Governmental body of Lithuania Ministry of CultureKultūros ministerija(in Lithuanian)Ministry overviewFormed8 June 1994; 30 years ago (1994-06-08)JurisdictionGovernment of LithuaniaHeadquartersJ. Basanavičiaus 5, Naujamiestis,01118 VilniusEmployees114 permanent employees(January 2021)[1]Annual budget€234 million (2021)[2]Minister responsibleSimonas Kairys, 16th Minister for Culture of LithuaniaWebsitelrkm.lrv.ltMap54°40′48.6″N 25°16′35.5″E࿯...

 

هذه المقالة عن لندن عاصمة المملكة المتحدة. لتصفح عناوين مشابهة، انظر لندن (توضيح). لندن الاسم الرسمي (بالإنجليزية: London)‏    الإحداثيات 51°30′26″N 0°07′39″W / 51.507222222222°N 0.1275°W / 51.507222222222; -0.1275   [1] تاريخ التأسيس 47[2]  تقسيم إداري  البلد المملكة المتحد�...

في كلافلين     الإحداثيات 38°31′30″N 98°32′14″W / 38.525°N 98.5372°W / 38.525; -98.5372   [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة بارتون  خصائص جغرافية  المساحة 0.85773 كيلومتر مربع (1 أبريل 2010)  ارتفاع 552 متر  عدد السكان  عدد السك...

 

American avant-garde composer (1912–1992) This article is about the composer. For other people with the same name, see John Cage (disambiguation). John CageCage in 1988BornJohn Milton Cage Jr.(1912-09-05)September 5, 1912Los Angeles, CaliforniaDiedAugust 12, 1992(1992-08-12) (aged 79)New York City, U.S.Alma materPomona CollegeOccupationsComposermusic theoristartistphilosopherSpouse Xenia Andreyevna Kashevaroff ​ ​(m. 1935; div. 1945)​...