Rolle's theorem

If a real-valued function f is continuous on a closed interval [a, b], differentiable on the open interval (a, b), and f (a) = f (b), then there exists a c in the open interval (a, b) such that f ′(c) = 0.

In calculus, Rolle's theorem or Rolle's lemma essentially states that any real-valued differentiable function that attains equal values at two distinct points must have at least one point, somewhere between them, at which the slope of the tangent line is zero. Such a point is known as a stationary point. It is a point at which the first derivative of the function is zero. The theorem is named after Michel Rolle.

Standard version of the theorem

If a real-valued function f is continuous on a proper closed interval [ab], differentiable on the open interval (a, b), and f (a) = f (b), then there exists at least one c in the open interval (a, b) such that

This version of Rolle's theorem is used to prove the mean value theorem, of which Rolle's theorem is indeed a special case. It is also the basis for the proof of Taylor's theorem.

History

Although the theorem is named after Michel Rolle, Rolle's 1691 proof covered only the case of polynomial functions. His proof did not use the methods of differential calculus, which at that point in his life he considered to be fallacious. The theorem was first proved by Cauchy in 1823 as a corollary of a proof of the mean value theorem.[1] The name "Rolle's theorem" was first used by Moritz Wilhelm Drobisch of Germany in 1834 and by Giusto Bellavitis of Italy in 1846.[2]

Examples

Half circle

A semicircle of radius r

For a radius r > 0, consider the function

Its graph is the upper semicircle centered at the origin. This function is continuous on the closed interval [−r, r] and differentiable in the open interval (−r, r), but not differentiable at the endpoints r and r. Since f (−r) = f (r), Rolle's theorem applies, and indeed, there is a point where the derivative of f is zero. The theorem applies even when the function cannot be differentiated at the endpoints because it only requires the function to be differentiable in the open interval.

Absolute value

The graph of the absolute value function

If differentiability fails at an interior point of the interval, the conclusion of Rolle's theorem may not hold. Consider the absolute value function

Then f (−1) = f (1), but there is no c between −1 and 1 for which the f ′(c) is zero. This is because that function, although continuous, is not differentiable at x = 0. The derivative of f changes its sign at x = 0, but without attaining the value 0. The theorem cannot be applied to this function because it does not satisfy the condition that the function must be differentiable for every x in the open interval. However, when the differentiability requirement is dropped from Rolle's theorem, f will still have a critical number in the open interval (a, b), but it may not yield a horizontal tangent (as in the case of the absolute value represented in the graph).

Functions with zero derivative

Rolle's theorem implies that a differentiable function whose derivative is in an interval is constant in this interval.

Indeed, if a and b are two points in an interval where a function f is differentiable, then the function satisfies the hypotheses of Rolle's theorem on the interval .

If the derivative of is zero everywhere, the derivative of is and Rolle's theorem implies that there is such that

Hence, for every and , and the function is constant.

Generalization

The second example illustrates the following generalization of Rolle's theorem:

Consider a real-valued, continuous function f on a closed interval [a, b] with f (a) = f (b). If for every x in the open interval (a, b) the right-hand limit and the left-hand limit

exist in the extended real line [−∞, ∞], then there is some number c in the open interval (a, b) such that one of the two limits is ≥ 0 and the other one is ≤ 0 (in the extended real line). If the right- and left-hand limits agree for every x, then they agree in particular for c, hence the derivative of f exists at c and is equal to zero.

Remarks

  • If f is convex or concave, then the right- and left-hand derivatives exist at every inner point, hence the above limits exist and are real numbers.
  • This generalized version of the theorem is sufficient to prove convexity when the one-sided derivatives are monotonically increasing:[3]

Proof of the generalized version

Since the proof for the standard version of Rolle's theorem and the generalization are very similar, we prove the generalization.

The idea of the proof is to argue that if f (a) = f (b), then f must attain either a maximum or a minimum somewhere between a and b, say at c, and the function must change from increasing to decreasing (or the other way around) at c. In particular, if the derivative exists, it must be zero at c.

By assumption, f is continuous on [a, b], and by the extreme value theorem attains both its maximum and its minimum in [a, b]. If these are both attained at the endpoints of [a, b], then f is constant on [a, b] and so the derivative of f is zero at every point in (a, b).

Suppose then that the maximum is obtained at an interior point c of (a, b) (the argument for the minimum is very similar, just consider f ). We shall examine the above right- and left-hand limits separately.

For a real h such that c + h is in [a, b], the value f (c + h) is smaller or equal to f (c) because f attains its maximum at c. Therefore, for every h > 0, hence where the limit exists by assumption, it may be minus infinity.

Similarly, for every h < 0, the inequality turns around because the denominator is now negative and we get hence where the limit might be plus infinity.

Finally, when the above right- and left-hand limits agree (in particular when f is differentiable), then the derivative of f at c must be zero.

(Alternatively, we can apply Fermat's stationary point theorem directly.)

Generalization to higher derivatives

We can also generalize Rolle's theorem by requiring that f has more points with equal values and greater regularity. Specifically, suppose that

  • the function f is n − 1 times continuously differentiable on the closed interval [a, b] and the nth derivative exists on the open interval (a, b), and
  • there are n intervals given by a1 < b1a2 < b2 ≤ ⋯ ≤ an < bn in [a, b] such that f (ak) = f (bk) for every k from 1 to n.

Then there is a number c in (a, b) such that the nth derivative of f at c is zero.

The red curve is the graph of function with 3 roots in the interval [−3, 2]. Thus its second derivative (graphed in green) also has a root in the same interval.

The requirements concerning the nth derivative of f can be weakened as in the generalization above, giving the corresponding (possibly weaker) assertions for the right- and left-hand limits defined above with f (n − 1) in place of f.

Particularly, this version of the theorem asserts that if a function differentiable enough times has n roots (so they have the same value, that is 0), then there is an internal point where f (n − 1) vanishes.

Proof

The proof uses mathematical induction. The case n = 1 is simply the standard version of Rolle's theorem. For n > 1, take as the induction hypothesis that the generalization is true for n − 1. We want to prove it for n. Assume the function f satisfies the hypotheses of the theorem. By the standard version of Rolle's theorem, for every integer k from 1 to n, there exists a ck in the open interval (ak, bk) such that f ′(ck) = 0. Hence, the first derivative satisfies the assumptions on the n − 1 closed intervals [c1, c2], …, [cn − 1, cn]. By the induction hypothesis, there is a c such that the (n − 1)st derivative of f  at c is zero.

Generalizations to other fields

Rolle's theorem is a property of differentiable functions over the real numbers, which are an ordered field. As such, it does not generalize to other fields, but the following corollary does: if a real polynomial factors (has all of its roots) over the real numbers, then its derivative does as well. One may call this property of a field Rolle's property.[citation needed] More general fields do not always have differentiable functions, but they do always have polynomials, which can be symbolically differentiated. Similarly, more general fields may not have an order, but one has a notion of a root of a polynomial lying in a field.

Thus Rolle's theorem shows that the real numbers have Rolle's property. Any algebraically closed field such as the complex numbers has Rolle's property. However, the rational numbers do not – for example, x3x = x(x − 1)(x + 1) factors over the rationals, but its derivative, does not. The question of which fields satisfy Rolle's property was raised in Kaplansky 1972.[4] For finite fields, the answer is that only F2 and F4 have Rolle's property.[5][6]

For a complex version, see Voorhoeve index.

See also

References

  1. ^ Besenyei, A. (September 17, 2012). "A brief history of the mean value theorem" (PDF).
  2. ^ See Cajori, Florian (1999). A History of Mathematics. American Mathematical Soc. p. 224. ISBN 9780821821022.
  3. ^ Artin, Emil (1964) [1931], The Gamma Function, translated by Butler, Michael, Holt, Rinehart and Winston, pp. 3–4.
  4. ^ Kaplansky, Irving (1972), Fields and Rings.[full citation needed]
  5. ^ Craven, Thomas; Csordas, George (1977), "Multiplier sequences for fields", Illinois J. Math., 21 (4): 801–817, doi:10.1215/ijm/1256048929.
  6. ^ Ballantine, C.; Roberts, J. (January 2002), "A Simple Proof of Rolle's Theorem for Finite Fields", The American Mathematical Monthly, 109 (1), Mathematical Association of America: 72–74, doi:10.2307/2695770, JSTOR 2695770.

Further reading

Read other articles:

Polisi Militer KostradLambang Polisi Militer Angkatan DaratDibentuk1961Negara IndonesiaCabang TNI Angkatan DaratTipe unitBadan Pelaksana KostradBagian dariKostradBaret BIRU TokohKomandanKolonel Cpm Tugino, S.Sos., S.H., M.M.WadanLetkol Cpm Imran Ilyas, S.H., M.H. Polisi Militer Kostrad atau (POM Kostrad) mempunyai tugas pokok membina Dan menyelenggarakan fungsi Kepolisian Militer Di lingkungan wilayah Kostrad untuk kepentingan Kostrad,baik Dalam penegakan Hukum,disiplin Dan Tat...

 

 

International scientific society for advancement of seismology Seismological Society of AmericaAbbreviationSSAFormation1906TypeNon-profitPurposeAn international society devoted to the advancement of seismology and its applications in understanding and mitigating earthquake hazards and in imaging the structure of the Earth.HeadquartersAlbany, CaliforniaRegion served globalMembership 2,500 individuals; corporate membersPresidentHeather DeShon[1]Staff 8Websitehttp://www.seismosoc.org The...

 

 

This is a timeline of the civil rights movement in the United States, a nonviolent mid-20th century freedom movement to gain legal equality and the enforcement of constitutional rights for people of color. The goals of the movement included securing equal protection under the law, ending legally institutionalized racial discrimination, and gaining equal access to public facilities, education reform, fair housing, and the ability to vote. 1947–1953 1947 April 14 – In Mendez v...

Pour les articles homonymes, voir 1re division. 1re division SS « Leibstandarte SS Adolf Hitler »Appellations allemandes successives :Leibstandarte SS Adolf Hitler (LSSAH)SS-Panzergrenadier-Division « Leibstandarte SS Adolf Hitler »1. SS-Panzer-Division « Leibstandarte SS Adolf Hitler » Emblème de la division. Création 1933 Dissolution mai 1945 Pays Troisième Reich Branche Waffen-SS Garnison Berlin-Lichterfelde et Metz Guerres Seconde Guerre m...

 

 

Paul NipkowBiographieNaissance 22 août 1860Lauenburg, PoméranieDécès 24 août 1940 (à 80 ans)BerlinSépulture Friedhof Pankow III (d)Nationalité AllemandDomicile AllemagneFormation Université Humboldt de BerlinActivités Inventeur, physicienAutres informationsDistinction Médaille Rudolf-Diesel (en)Plaque commémorativeVue de la sépulture.modifier - modifier le code - modifier Wikidata Paul Nipkow, né le 22 août 1860 à Lauenburg, en Allemagne, mort le 24 août 1940, à Berlin,...

 

 

Ini adalah nama Korea; marganya adalah Hong. Hong Sang-sooHong Sang-soo on the set of Night and Day, 5 September 2007Lahir25 Oktober 1961 (umur 62)Seoul, South KoreaPekerjaanFilm directorNama KoreaHangul홍상수 Hanja洪尚秀 Alih AksaraHong Sang-suMcCune–ReischauerHong Sangsu Hong Sang-soo (lahir 25 Oktober 1961) adalah sutradara dan penulis skenario film berkebangsaan Korea Selatan. Namanya mulai dikenal oleh publik Korea Selatan sejak tahun 1996 ketika mengarahkan film The Day a P...

Ravindra Airlangga Anggota Dewan Perwakilan RakyatRepublik IndonesiaPetahanaMulai menjabat 14 Juni 2022Pengganti Antar WaktuPendahuluIchsan FirdausPenggantiPetahanaDaerah pemilihanJawa Barat V Informasi pribadiLahir28 Agustus 1991 (umur 32)DKI Jakarta, IndonesiaPartai politikGolkarHubunganAirlangga Hartarto (ayah)Hartarto Sastrosoenarto (kakek)Alma materUniversity of San Francisco Johns Hopkins UniversityPekerjaanPengusahaPolitikusSunting kotak info • L • B Ravindra Air...

 

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

كيريلوف    علم شعار الإحداثيات 59°52′00″N 38°23′00″E / 59.866666666667°N 38.383333333333°E / 59.866666666667; 38.383333333333   تاريخ التأسيس 1397  تقسيم إداري  البلد روسيا[2][1]  خصائص جغرافية ارتفاع 120 متر  عدد السكان  عدد السكان 7468 (1 يناير 2018)[3]  معلومات أخرى من�...

 

 

Historic house in Virginia, United States For another Carter Glass house in downtown Lynchburg, see Carter Glass House. United States historic placeMontviewU.S. National Register of Historic PlacesVirginia Landmarks Register Montview, December 2008Show map of VirginiaShow map of the United StatesLocationLiberty University campus between VA 670 and US 29, Lynchburg, VirginiaCoordinates37°21′10″N 79°10′43″W / 37.35278°N 79.17861°W / 37.35278; -79.17861Area1.7...

 

 

County in Georgia, United States Not to be confused with Colquitt, Georgia. County in GeorgiaColquitt CountyCountyColquitt County Courthouse in MoultrieLocation within the U.S. state of GeorgiaGeorgia's location within the U.S.Coordinates: 31°11′N 83°46′W / 31.19°N 83.77°W / 31.19; -83.77Country United StatesState GeorgiaFounded1856; 168 years ago (1856)Named forWalter Terry ColquittSeatMoultrieLargest cityMoultrieArea • ...

Stasiun Orikasa織笠駅Stasiun Orikasa pada Juni 2019LokasiOrikasa, Yamada, Shimohei, Iwate(岩手県閉伊郡山田町織笠)JepangOperatorSanriku RailwayJalur■ Jalur RiasLetak64.3 km dari SakariSejarahDibuka1935Sunting kotak info • L • BBantuan penggunaan templat ini Stasiun Orikasa (織笠駅code: ja is deprecated , Orikasa-eki) adalah sebuah stasiun kereta api Sanriku Railway Company yang terletak di Yamada, Prefektur Iwate, Jepang. Jalur Stasiun Orikasa dilayani oleh...

 

 

Siegfried KerschbaumerNazionalità Italia Sci alpino SpecialitàDiscesa libera, supergigante, combinata Termine carriera1984 Palmarès Trofeo Vittorie Coppa Europa 1 trofeo Vedi maggiori dettagli  Modifica dati su Wikidata · Manuale Siegfried Kerschbaumer (a volte riportato come Sigfrid; 21 febbraio 1961) è un ex sciatore alpino italiano, vincitore della Coppa Europa nel 1980. Indice 1 Biografia 2 Palmarès 2.1 Coppa del Mondo 2.2 Coppa Europa 2.3 Campionati italiani 3 Note 4...

 

 

Comic book series (1949 – 2017) JugheadCover to Jughead #1 (October 2015). Art by Erica Henderson.Publication informationPublisherArchie ComicsSchedule(vol. 1-2)Bimonthly(vol. 3)MonthlyFormatOngoing seriesPublication date(vol. 1)January 1949 – June 1987(vol. 2)August 1987 - September 2012(vol. 3)October 2015 - June 2017No. of issues(vol. 1)352(vol. 2)214(vol. 3)16Main character(s)Jughead JonesCreative teamWritten byVarious (vol. 1-2)Chip Zdarsky (vol. 3 #1-8)Ryan North (vol. 3 #9-14)Mark ...

UFC mixed martial arts event in 2007 UFC 70: Nations CollideThe poster for UFC 70: Nations CollideInformationPromotionUltimate Fighting ChampionshipDate21 April 2007VenueManchester Evening News ArenaCityManchester, United KingdomAttendance15,114 (12,708 paid)[1]Total gate$2,628,472 (£1.3 million GBP)[2]Event chronology UFC 69: Shootout UFC 70: Nations Collide UFC 71: Liddell vs. Jackson 2 UFC 70: Nations Collide was the second UFC event held in the United Kingdom, and t...

 

 

Spanish medieval religious and military order Order of AlcántaraOrden de Alcántara The order emblem, a green greek cross in gules with fleur-de-lis at its ends[image reference needed][when?]TypeReligious Order of HonourFormerly a Military OrderCountrySpainRoyal houseHouse of Bourbon-AnjouReligious affiliationCatholicSovereignKing Felipe VIGrand MasterPrince Pedro, Duke of CalabriaPrecedenceRelatedOrder of SantiagoOrder of CalatravaOrder of Montesa The Order of Alcántar...

 

 

ملعب تورينو الأولمبيمعلومات عامةسمّي باسم Grande Torino (en) — بينيتو موسوليني — فيتوريو بوتسو — Comunale (en) العنوان Via Filadelfia 96/B, I-10134 Torino (بالإيطالية)[1] المنطقة الإدارية تورينو البلد  إيطاليا[2] مواقع الويب comune.torino.it… (الإيطالية)torinofc.it… التشييد والافتتاحالافتتاح الرسمي 14 �...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 外務大臣 日本 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2014年1月) 日本外務大臣Minister for Foreign Affairs外務省...

 

 

Albany Blick auf die Innenstadt von Albany Siegel Flagge Lage in New York Albany (New York) Albany Basisdaten Gründung: 1614 Staat: Vereinigte Staaten Bundesstaat: New York County: Albany County Koordinaten: 42° 40′ N, 73° 47′ W42.659722222222-73.78138888888960Koordinaten: 42° 40′ N, 73° 47′ W Zeitzone: Eastern (UTC−5/−4) Einwohner: – Metropolregion: 99.224 (Stand: 2020) 899.262 (Stand: 2020) Haushalte: 41.614 (Stand:&...