Phosphoribosyl pyrophosphate
Phosphoribosyl pyrophosphate
Names
IUPAC name
α-D -Ribofuranose 1′-(trihydrogen diphosphate) 5′-(dihydrogen phosphate)
Systematic IUPAC name
(2R ,3R ,4S ,5R )-3,4-Dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl trihydrogen diphosphate
Other names
5-phospho-α-D -ribose 1-diphosphate PRPP
Identifiers
ChEBI
ChemSpider
DrugBank
MeSH
Phosphoribosyl+pyrophosphate
UNII
InChI=1S/C5H13O14P3/c6-3-2(1-16-20(8,9)10)17-5(4(3)7)18-22(14,15)19-21(11,12)13/h2-7H,1H2,(H,14,15)(H2,8,9,10)(H2,11,12,13)/t2-,3-,4-,5-/m1/s1
Y Key: PQGCEDQWHSBAJP-TXICZTDVSA-N
Y InChI=1/C5H13O14P3/c6-3-2(1-16-20(8,9)10)17-5(4(3)7)18-22(14,15)19-21(11,12)13/h2-7H,1H2,(H,14,15)(H2,8,9,10)(H2,11,12,13)/t2-,3-,4-,5-/m1/s1
Key: PQGCEDQWHSBAJP-TXICZTDVBW
O=P(O[C@H]1O[C@@H]([C@@H](O)[C@H]1O)COP(=O)(O)O)(O)OP(=O)(O)O
Properties
C5 H13 O14 P3
Molar mass
390.07 g/mol
Except where otherwise noted, data are given for materials in their
standard state (at 25 °C [77 °F], 100 kPa).
Chemical compound
Phosphoribosyl pyrophosphate (PRPP ) is a pentose phosphate . It is a biochemical intermediate in the formation of purine nucleotides via inosine-5-monophosphate , as well as in pyrimidine nucleotide formation. Hence it is a building block for DNA and RNA .[ 1] [ 2] [ 3] The vitamins thiamine [ 4] and cobalamin ,[ 5] and the amino acid tryptophan also contain fragments derived from PRPP.[ 6] It is formed from ribose 5-phosphate (R5P) by the enzyme ribose-phosphate diphosphokinase :[ 7]
It plays a role in transferring phospho-ribose groups in several reactions, some of which are salvage pathways :[ 8]
In de novo generation of purines, the enzyme amidophosphoribosyltransferase acts upon PRPP to create phosphoribosylamine .[ 2] The histidine biosynthesis pathway involves the reaction between PRPP and ATP , which activates the latter to ring cleavage. Carbon atoms from ribose in PRPP form the linear chain and part of the imidazole ring in histidine.[ 15] [ 16] [ 17] The same is true for the biosynthesis of tryptophan, with the first step being N-alkylation of anthranilic acid catalysed by the enzyme anthranilate phosphoribosyltransferase .[ 15] [ 18] [ 19]
Increased PRPP
Increased levels of PRPP are characterized by the overproduction and accumulation of uric acid leading to hyperuricemia and hyperuricosuria . It is one of the causes of gout .[ 20]
Increased levels of PRPP are present in Lesch–Nyhan Syndrome . Decreased levels of hypoxanthine guanine phosphoribosyl transferase (HGPRT) causes this accumulation, as PRPP is a substrate used by HGPRT during purine salvage.[ 21]
See also
References
^ Ron Caspi (2009-01-13). "Pathway: 5-aminoimidazole ribonucleotide biosynthesis I" . MetaCyc Metabolic Pathway Database. Retrieved 2022-02-02 .
^ a b Zhang, Y.; Morar, M.; Ealick, S.E. (2008). "Structural biology of the purine biosynthetic pathway" . Cellular and Molecular Life Sciences . 65 (23): 3699– 3724. doi :10.1007/s00018-008-8295-8 . PMC 2596281 . PMID 18712276 .
^ Gupta, Rani; Gupta, Namita (2021). "Nucleotide Biosynthesis and Regulation". Fundamentals of Bacterial Physiology and Metabolism . pp. 525– 554. doi :10.1007/978-981-16-0723-3_19 . ISBN 978-981-16-0722-6 . S2CID 234897784 .
^ Chatterjee, Abhishek; Hazra, Amrita B.; Abdelwahed, Sameh; Hilmey, David G.; Begley, Tadhg P. (2010). "A "Radical Dance" in Thiamin Biosynthesis: Mechanistic Analysis of the Bacterial Hydroxymethylpyrimidine Phosphate Synthase" . Angewandte Chemie International Edition . 49 (46): 8653– 8656. doi :10.1002/anie.201003419 . PMC 3147014 . PMID 20886485 .
^ Ron Caspi (2019-09-23). "Pathway: 5-hydroxybenzimidazole biosynthesis (anaerobic)" . MetaCyc Metabolic Pathway Database. Retrieved 2022-02-10 .
^ Mehta, Angad P.; Abdelwahed, Sameh H.; Fenwick, Michael K.; Hazra, Amrita B.; Taga, Michiko E.; Zhang, Yang; Ealick, Steven E.; Begley, Tadhg P. (2015). "Anaerobic 5-Hydroxybenzimidazole Formation from Aminoimidazole Ribotide: An Unanticipated Intersection of Thiamin and Vitamin B12 Biosynthesis" . Journal of the American Chemical Society . 137 (33): 10444– 10447. doi :10.1021/jacs.5b03576 . PMC 4753784 . PMID 26237670 .
^ Li, Sheng; Lu, Yongcheng; Peng, Baozhen; Ding, Jianping (January 2007). "Crystal structure of human phosphoribosylpyrophosphate synthetase 1 reveals a novel allosteric site" . Biochemical Journal . 401 (1): 39– 47. doi :10.1042/BJ20061066 . PMC 1698673 . PMID 16939420 .
^ Ron Caspi (2022-02-15). "5-phospho-α-D-ribose 1-diphosphate" . MetaCyc Metabolic Pathway Database. Retrieved 2022-02-15 .
^ Silva, Carlos H. T. P.; Silva, Marcio; Iulek, Jorge; Thiemann, Otavio H. (2008). "Structural Complexes of Human Adenine Phosphoribosyltransferase Reveal Novel Features of the APRT Catalytic Mechanism". Journal of Biomolecular Structure and Dynamics . 25 (6): 589– 597. doi :10.1080/07391102.2008.10507205 . PMID 18399692 . S2CID 40788077 .
^ a b Finette, Barry A.; Kendall, Heather; Vacek, Pamela M. (2002). "Mutational spectral analysis at the HPRT locus in healthy children". Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis . 505 (1– 2): 27– 41. doi :10.1016/S0027-5107(02)00119-7 . PMID 12175903 .
^ Vinitsky, A.; Grubmeyer, C. (1993). "A new paradigm for biochemical energy coupling. Salmonella typhimurium nicotinate phosphoribosyltransferase" . Journal of Biological Chemistry . 268 (34): 26004– 26010. doi :10.1016/S0021-9258(19)74485-8 . PMID 7503993 .
^ González-Segura, Lilian; Witte, John F.; McClard, Ronald W.; Hurley, Thomas D. (2007). "Ternary Complex Formation and Induced Asymmetry in Orotate Phosphoribosyltransferase". Biochemistry . 46 (49): 14075– 14086. doi :10.1021/bi701023z . PMID 18020427 .
^ Selwood, Trevor; Jaffe, Eileen K. (2012). "Dynamic dissociating homo-oligomers and the control of protein function" . Archives of Biochemistry and Biophysics . 519 (2): 131– 143. doi :10.1016/j.abb.2011.11.020 . PMC 3298769 . PMID 22182754 .
^ Krenitsky, Thomas A.; Neil, Shannon M.; Miller, Richard L. (1970). "Guanine and Xanthine Phosphoribosyltransfer Activities of Lactobacillus casei and Escherichia coli" . Journal of Biological Chemistry . 245 (10): 2605– 2611. doi :10.1016/S0021-9258(18)63113-8 .
^ a b Voet, Donald (2016). Fundamentals of biochemistry : life at the molecular level . Judith G. Voet, Charlotte W. Pratt (Fifth ed.). Hoboken, NJ. ISBN 978-1-118-91840-1 . OCLC 910538334 . {{cite book }}
: CS1 maint: location missing publisher (link )
^ Ron Caspi (2008-10-10). "Pathway: L-histidine biosynthesis" . MetaCyc Metabolic Pathway Database. Retrieved 2022-02-17 .
^ Stepansky, A.; Leustek, T. (2006). "Histidine biosynthesis in plants". Amino Acids . 30 (2): 127– 142. doi :10.1007/s00726-005-0247-0 . PMID 16547652 . S2CID 23733445 .
^ C.A. Fulcher (2010-02-12). "Pathway: L-tryptophan biosynthesis" . MetaCyc Metabolic Pathway Database. Retrieved 2022-02-17 .
^ Crawford, Irving P. (1989). "Evolution of a Biosynthetic Pathway: The Tryptophan Paradigm". Annual Review of Microbiology . 43 : 567– 600. doi :10.1146/annurev.mi.43.100189.003031 . PMID 2679363 .
^ Elliott, Katherine; Fitzsimons, David W. (16 September 2009). Purine and Pyrimidine Metabolism . John Wiley & Sons. pp. 143– 158. ISBN 9780470717981 .
^ Cakmakli, Hasan F.; Torres, Rosa J.; Menendez, Araceli; Yalcin-Cakmakli, Gul; Porter, Christopher C.; Puig, Juan Garcia; Jinnah, H.A. (2019). "Macrocytic anemia in Lesch–Nyhan disease and its variants" . Genetics in Medicine . 21 (2): 353– 360. doi :10.1038/s41436-018-0053-1 . PMC 6281870 . PMID 29875418 .