Glycineamide ribonucleotide
Glycineamide ribonucleotide
Names
IUPAC name
(1R )-1,4-Anhydro-1-glycinamido-D -ribitol 5-(dihydrogen phosphate)
Systematic IUPAC name
[(2R ,3S ,4R ,5R )-5-(2-Aminoacetamido)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate
Other names
Glycineamide ribotide, GAR
Identifiers
ChEBI
ChemSpider
KEGG
UNII
InChI=1S/C7H15N2O8P/c8-1-4(10)9-7-6(12)5(11)3(17-7)2-16-18(13,14)15/h3,5-7,11-12H,1-2,8H2,(H,9,10)(H2,13,14,15)/t3-,5-,6-,7-/m1/s1
Y Key: OBQMLSFOUZUIOB-SHUUEZRQSA-N
Y
C([C@@H]1[C@H]([C@H]([C@@H](O1)NC(=O)CN)O)O)OP(=O)(O)O
Properties
C 7 H 15 N 2 O 8 P
Molar mass
286.177 g·mol−1
Except where otherwise noted, data are given for materials in their
standard state (at 25 °C [77 °F], 100 kPa).
Chemical compound
Glycineamide ribonucleotide (or GAR ) is a biochemical intermediate in the formation of purine nucleotides via inosine -5-monophosphate, and hence is a building block for DNA and RNA .[ 1] [ 2] [ 3] The vitamins thiamine [ 4] and cobalamin [ 5] also contain fragments derived from GAR.[ 6]
Phosphoribosylamine (PRA)
GAR is the product of the enzyme phosphoribosylamine—glycine ligase acting on phosphoribosylamine (PRA) to combine it with glycine in a process driven by ATP . The reaction, EC 6.3.4.13 forms an amide bond:[ 7]
PRA + glycine + ATP → GAR + ADP + Pi
The biosynthesis pathway next adds a formyl group from 10-formyltetrahydrofolate to GAR, catalysed by phosphoribosylglycinamide formyltransferase in reaction EC 2.1.2.2 and producing formylglycinamide ribotide (FGAR):[ 7]
GAR + 10-formyltetrahydrofolate → FGAR + tetrahydrofolate
See also
References
^ R. Caspi (2009-01-13). "Pathway: 5-aminoimidazole ribonucleotide biosynthesis I" . MetaCyc Metabolic Pathway Database. Retrieved 2022-02-02 .
^ Zhang, Y.; Morar, M.; Ealick, S.E. (2008). "Structural biology of the purine biosynthetic pathway" . Cellular and Molecular Life Sciences . 65 : 3699– 3724. doi :10.1007/s00018-008-8295-8 . PMC 2596281 . PMID 18712276 .
^ Gupta, Rani; Gupta, Namita (2021). "Nucleotide Biosynthesis and Regulation". Fundamentals of Bacterial Physiology and Metabolism . pp. 525– 554. doi :10.1007/978-981-16-0723-3_19 . ISBN 978-981-16-0722-6 . S2CID 234897784 .
^ Chatterjee, Abhishek; Hazra, Amrita B.; Abdelwahed, Sameh; Hilmey, David G.; Begley, Tadhg P. (2010). "A "Radical Dance" in Thiamin Biosynthesis: Mechanistic Analysis of the Bacterial Hydroxymethylpyrimidine Phosphate Synthase" . Angewandte Chemie International Edition . 49 (46): 8653– 8656. doi :10.1002/anie.201003419 . PMC 3147014 . PMID 20886485 .
^ R. Caspi (2019-09-23). "Pathway: 5-hydroxybenzimidazole biosynthesis (anaerobic)" . MetaCyc Metabolic Pathway Database. Retrieved 2022-02-10 .
^ Mehta, Angad P.; Abdelwahed, Sameh H.; Fenwick, Michael K.; Hazra, Amrita B.; Taga, Michiko E.; Zhang, Yang; Ealick, Steven E.; Begley, Tadhg P. (2015). "Anaerobic 5-Hydroxybenzimidazole Formation from Aminoimidazole Ribotide: An Unanticipated Intersection of Thiamin and Vitamin B12 Biosynthesis" . Journal of the American Chemical Society . 137 (33): 10444– 10447. doi :10.1021/jacs.5b03576 . PMC 4753784 . PMID 26237670 .
^ a b Welin, Martin; Grossmann, Jörg Günter; Flodin, Susanne; Nyman, Tomas; Stenmark, Pål; Trésaugues, Lionel; Kotenyova, Tetyana; Johansson, Ida; Nordlund, Pär; Lehtiö, Lari (2010). "Structural studies of tri-functional human GART" . Nucleic Acids Research . 38 (20): 7308– 7319. doi :10.1093/nar/gkq595 . PMC 2978367 . PMID 20631005 .