Muḥammad ibn Muḥammad ibn al-Ḥasan al-Ṭūsī (1201 – 1274),[a] also known as Naṣīr al-Dīn al-Ṭūsī[5] (Arabic: نصیر الدین الطوسی; Persian: نصیر الدین طوسی) or simply as (al-)Tusi, was a Persianpolymath, architect, philosopher, physician, scientist, and theologian.[6] Nasir al-Din al-Tusi was a well published author, writing on subjects of math, engineering, prose, and mysticism. Additionally, al-Tusi made several scientific advancements. In astronomy, al-Tusi created very accurate tables of planetary motion, an updated planetary model, and critiques of Ptolemaic astronomy. He also made strides in logic, mathematics but especially trigonometry, biology, and chemistry. Nasir al-Din al-Tusi left behind a great legacy as well. Tusi is widely regarded as one of the greatest scientists of medieval Islam,[7] since he is often considered the creator of trigonometry as a mathematical discipline in its own right.[8][9][10] The Muslim scholar Ibn Khaldun (1332–1406) considered Tusi to be the greatest of the later Persian scholars.[11] There is also reason to believe that he may have influenced Copernican heliocentrism.[12][13][14][15][16][17]
Biography
Nasir al-Din Tusi was born in the city of Tus in medievalKhorasan (northeastern Iran) in the year 1201 and began his studies at an early age. In Hamadan and Tus, he studied the Quran, Hadith, Ja'fari jurisprudence, logic, philosophy, mathematics, medicine, and astronomy.[18]
He was born into a Shī‘ah family and lost his father at a young age. Fulfilling the wish of his father, the young Muhammad took learning and scholarship very seriously and traveled far and wide to attend the lectures of renowned scholars and acquired knowledge, an exercise highly encouraged in his Islamic faith. At a young age, he moved to Nishapur to study philosophy under Farid al-Din Damad and mathematics under Muhammad Hasib.[19] He met also Attar of Nishapur, the legendary Sufi master who was later killed by the Mongols, and he attended the lectures of Qutb al-Din al-Misri - a student of Al-Razi.
Nasir-al-Din Tusi writes in his work, Desideratum of the Faithful (Maṭlūb al-muʾminīn),“To become people of spiritual reality, it is incumbent to fulfill the symbolic elucidation (ta'wīl) of the seven pillars of the religious law (sharīʿat)”. He also explains that fulfilling the religious law is much easier than fulfilling its spiritual interpretation.[20]
He explains in his book Aghaz u anjam that the sacred accounts of history that we perceive within the bounds of space and time symbolize events that have no such restrictions. They are only expressed in this way so that humans are able to comprehend them.[21]
In Mosul, al-Tusi studied mathematics and astronomy with Kamal al-Din Yunus (d. AH 639 / AD 1242), a pupil of Sharaf al-Dīn al-Ṭūsī.[1] Later on he corresponded with Sadr al-Din al-Qunawi, the son-in-law of Ibn Arabi, and it seems that mysticism, as propagated by Sufi masters of his time, was not appealing to him. Once the occasion was suitable, he composed his own manual of philosophical Sufism in the form of a small booklet entitled Awsaf al-Ashraf, or "The Attributes of the Illustrious".
Nasir al-Din Tusi’s autobiography, The Voyage (Sayr wa-Suluk) explains that a literary devastation such as the devastation of the Alamūt libraries in 1256 would not waver the spirit of the Nizari Ismaili community because they give more importance to the “living book” (the Imam of the Time) rather than the “written word”. Their hearts are attached to the Commander of the Believers (amir al-mu'minin), not just the “command” itself. There is always a present living Imam in world, and following him, a believer will never go astray.[26]
In 1256 al-Tusi was in the castle of Alamut when it was attacked by the forces of the Mongol leader Hulegu, a grandson of Genghis Khan. Some sources claim that al-Tusi betrayed the defences of Alamut to the invading Mongols. After his forces destroyed Alamut, Hulegu, who was himself interested in the natural sciences, treated al-Tusi with great respect, appointing him as scientific adviser and a permanent member of his inner council.[27] To great controversy, it is widely assumed Tusi was with the Mongol forces under Hulegu when they attacked and massacred the inhabitants of Baghdad in 1258[28] and he played an essential role in ending of the QurayshEmpire.[29][30][31]
Soon after, he was given the full authority of administering the finances of religious foundations, and visited many of the Shi'a shrines once the siege of Baghdad was over.[28][32] Being in a position of power, Tusi was able to bolster the Twelver Shi'a cause throughout Persia and Iraq.[33]
Works
Tusi has about 150 works, of which 25 are in Persian and the remaining are in Arabic,[34] and there is one treatise in Persian, Arabic and Turkish.[35]
Kitāb al-Shakl al-qattāʴ - Book on the complete quadrilateral. A five-volume summary of trigonometry.
Al-Tadhkirah fi'ilm al-hay'ah – A memoir on the science of astronomy. Many commentaries were written about this work called Sharh al-Tadhkirah (A Commentary on al-Tadhkirah) - Commentaries were written by Abd al-Ali ibn Muhammad ibn al-Husayn al-Birjandi and by Nazzam Nishapuri.
Maṭlūb al-muʾminīn (Desideratum of the Faithful)[20]
Aghaz u anjam - Esoteric interpretation of the Quran[21]
An example from one of his poems:
Anyone who knows, and knows that he knows,
makes the steed of intelligence leap over the vault of heaven.
Anyone who does not know but knows that he does not know,
can bring his lame little donkey to the destination nonetheless.
Anyone who does not know, and does not know that he does not know,
is stuck forever in double ignorance.
Achievements
During his stay in Nishapur, Tusi established a reputation as an exceptional scholar. Tusi’s prose writing, which numbers over 150 works, represent one of the largest collections by a single Islamic author. Writing in both Arabic and Persian, Nasir al-Din Tusi dealt with both religious ("Islamic") topics and non-religious or secular subjects ("the ancient sciences").[34] His works include the definitive Arabic versions of the works of Euclid, Archimedes, Ptolemy, Autolycus, and Theodosius of Bithynia.[34]
Tusi convinced Hulegu Khan to construct an observatory for establishing accurate astronomical tables for better astrological predictions. Beginning in 1259, the Rasad Khaneh observatory was constructed in Azarbaijan, south of the river Aras, and to the west of Maragheh, the capital of the Ilkhanate Empire.[37]
Based on the observations in this for the time being most advanced observatory, Tusi made very accurate tables of planetary movements as depicted in his book Zij-i ilkhani (Ilkhanic Tables). This book contains astronomical tables for calculating the positions of the planets and the names of the stars. His model for the planetary system is believed to be the most advanced of his time, and was used extensively until the development of the heliocentric model in the time of Nicolaus Copernicus. Between Ptolemy and Copernicus, he is considered by many[who?] to be one of the most eminent astronomers of his time. His famous student Shams al-Din al-Bukhari[3] was the teacher of Byzantine scholar Gregory Chioniades,[38] who had in turn trained astronomerManuel Bryennios[39] about 1300 in Constantinople.
For his planetary models, he invented a geometrical technique called a Tusi-couple, which generates linear motion from the sum of two circular motions. He used this technique to replace Ptolemy's problematic equant[40] for many planets, but was unable to find a solution to Mercury, which was used later by Ibn al-Shatir as well as Ali Qushji.[41] The Tusi couple was later employed in Ibn al-Shatir's geocentric model and Nicolaus Copernicus' heliocentricCopernican model.[42] He also calculated the value for the annual precession of the equinoxes and contributed to the construction and usage of some astronomical instruments including the astrolabe.
Ṭūsī criticized Ptolemy's use of observational evidence to show that the Earth was at rest, noting that such proofs were not decisive. Although it doesn't mean that he was a supporter of mobility of the earth, as he and his 16th-century commentator al-Bīrjandī, maintained that the earth's immobility could be demonstrated, only by physical principles found in natural philosophy.[43] Tusi's criticisms of Ptolemy were similar to the arguments later used by Copernicus in 1543 to defend the Earth's rotation.[44]
About the real essence of the Milky Way, Ṭūsī in his Tadhkira writes:
"The Milky Way, i.e. the galaxy, is made up of a very large number of small, tightly-clustered stars, which, on account of their concentration and smallness, seem to be cloudy patches. because of this, it was likened to milk in color."
[45]
Three centuries later the proof of the Milky Way consisting of many stars came in 1610 when Galileo Galilei used a telescope to study the Milky Way and discovered that it is really composed of a huge number of faint stars.[46]
"What spurred him to this was that in the assertoricsyllogisticAristotle and others sometimes used contradictories of absolute propositions on the assumption that they are absolute; and that was why so many decided that absolutes did contradict absolutes. When Avicenna had shown this to be wrong, he wanted to develop a method of construing those examples from Aristotle."[47]
Mathematics
Al-Tusi was the first to write a work on trigonometry independently of astronomy.[48] Al-Tusi, in his Treatise on the Quadrilateral, gave an extensive exposition of spherical trigonometry, distinct from astronomy.[49] It was in the works of Al-Tusi that trigonometry achieved the status of an independent branch of pure mathematics distinct from astronomy, to which it had been linked for so long.[50][51]
He was the first to list the six distinct cases of a right triangle in spherical trigonometry.[52]
In his On the Sector Figure, appears the famous Sine Law for plane triangles.[53]
He also stated the sine law for spherical triangles,[54][55] discovered the law of tangents for spherical triangles, and provided proofs for these laws.[53]
While Aristotle (d. 322 BCE) had suggested that all colors can be aligned on a single line from black to white, Ibn-Sina (d. 1037) described that there were three paths from black to white, one path via grey, a second path via red and the third path via green. Al-Tusi (ca. 1258) stated that there are no less than five of such paths, via lemon (yellow), blood (red), pistachio (green), indigo (blue) and grey. This text, which was copied in the Middle East numerous times until at least the nineteenth century as part of the textbook Revision of the Optics (Tanqih al-Manazir) by Kamal al-Din al-Farisi (d. 1320), made color space effectively two-dimensional.[56]
Before Al-Tusi, Robert Grosseteste (d. 1253) had proposed an effectively three-dimensional model of color space.[57]
Biology
In his Akhlaq-i Nasiri, Tusi wrote about several biological topics. He defended a version of Aristotle's scala naturae, in which he placed man above animals, plants, minerals, and the elements. He described "grasses which grow without sowing or cultivation, by the mere mingling of elements,"[58] as closest to minerals. Among plants, he considered the date-palm as the most highly developed, since "it only lacks one thing further to reach (the stage of) an animal: to tear itself loose from the soil and to move away in the quest for nourishment."[58]
The lowest animals "are adjacent to the region of plants: such are those animals which propagate like grass, being incapable of mating [...], e.g. earthworms, and certain insects".[59] The animals "which reach the stage of perfection [...] are distinguished by fully developed weapons", such as antlers, horns, teeth, and claws. Tusi described these organs as adaptations to each species's lifestyle, in a way anticipating natural theology. He continued:
"The noblest of the species is that one whose sagacity and perception is such that it accepts discipline and instruction: thus there accrues to it the perfection not originally created in it. Such are the schooled horse and the trained falcon. The greater this faculty grows in it, the more surpassing its rank, until a point is reached where the (mere) observation of action suffices as instruction: thus, when they see a thing, they perform the like of it by mimicry, without training [...]. This is the utmost of the animal degrees, and the first of the degrees of Man in contiguous therewith."[60]
Thus, in this paragraph, Tusi described different types of learning, recognising observational learning as the most advanced form, and correctly attributing it to certain animals.
Tusi seems to have perceived man as belonging to the animals, since he stated that "the Animal Soul [comprising the faculties of perception and movement ...] is restricted to individuals of the animal species", and that, by possessing a "Human Soul, [...] mankind is distinguished and particularized among other animals."[61]
Some scholars have interpreted Tusi's biological writings as suggesting that he adhered to some kind of evolutionary theory. However, Tusi did not state explicitly that he believed species to change over time.[citation needed]
Chemistry
Tusi contributed to the field of chemistry, stating an early law of conservation of mass. Al-Tusi's theory of chemical transformation was based on the idea that substances could be transformed into other substances through chemical reactions, but that the total mass of the substances involved in the reaction would remain constant. This idea was a precursor to the law of conservation of mass, which states that the total mass of a closed system remains constant during a chemical reaction. Al-Tusi believed that chemical transformations were governed by natural laws and that they could be understood through observation, experimentation, and logical reasoning.[62][63][64]
Philosophy
Tusi contributed many writings to the topic of philosophy. Amongst his philosophical work are his disagreements with fellow philosopher Avicenna. His most famous philosophical work is Akhlaq-i nasiri or Nasirean Ethics in English.[65] Within this work he discusses and compares Islamic teachings to the ethics of Aristotle and Plato. Tusi's book became a popular ethical work in the Muslim world, specifically in India and Persia.[65] Tusi's work also left an impact on Shi'ite Islamic theology. His book Targid also called Catharsis is significant in Shi'ite theology.[66] He also contributed five works to the subject of logic; which were highly regarded by his contemporaries and achieved notoriety in the Muslim world.[66]
Some scholars believe that Nicolaus Copernicus may have been influenced by Middle Eastern astronomers due to uncanny similarities between his work and the uncited work of these Islamic scholars, including Nasir al-Din al-Tusi, Ibn al-Shatir, Muayyad al-Din al-Urdi, and Qutb al-Din al-Shirazi.[12][13][14][15][16][17] al-Tusi specifically, the plagiarism in question comes from similarities in the Tusi couple and Copernicus' geometric method of removing the Equant from mathematical astronomy.[14][16] Not only do both of the methods match geometrically, however, more importantly they both use the same exact lettering system for each vertex; a detail that seems too preternatural to be happenstance.[14][16] Moreover, the fact that several other details of his model also mirror other Islamic scholars bolsters the notion that Copernicus' work may not have been only his own.[16]
There is no evidence that any of the direct work of Nasir al-Din al-Tusi ever made it to Copernicus, however there is evidence that the mathematics and theories did make the journey to Europe.[12][13] There were Jewish scientists and pilgrims who would make the journey from the Middle East to Europe, bringing with them Middle Eastern scientific ideas to share with their Christian counterparts.[13] While this is not direct evidence that Copernicus has access to al-Tusi's work, it does show that it was possible.[13] There was just such a Jewish scholar by the name of Abner of Burgos who wrote a book containing an incomplete version of the Tusi couple that he had learned second hand, which could have been found by Copernicus.[12] It is important to note that his version had no proofs of the geometry either, so if Copernicus had obtained this book he would have had to complete both the proof and mechanism.[12] Additionally, some scholars believe that, if not Jewish thinkers, it could have been transmission from the Islamic school in Maragheh, home to Nasir al-Din al-Tusi's observatory to Muslim Spain.[12][13] From Spain, al-Tusi and other Islamic cosmological theories could spread through Europe.[12][13] Spread of Islamic astronomy from Maragheh Observatory into Europe could have also been possible in the form of Greek translations from Gregory Choniades.[13] There is evidence as to the means of Copernicus acquiring the Tusi couple and suspicious similarities, not only in math but in visual details as well.[12][13][14][15][16][17]
Despite this circumstantial evidence, there is still no direct proof that Copernicus did plagiarize the work of Nasir al-Din al-Tusi, and if he did that he did so intentionally.[14][72][73][74] The Tusi couple is not a unique principle, and as the equant was a problematic necessity to preserve circular motion it is possible that more than one astronomer wished to improve on it; to that end, some scholars argue it would not be difficult for an astronomer to use Euclid's own work to derive the Tusi couple on their own, and that Copernicus most likely did this instead of stealing.[72][73] Before Copernicus ever published the work on his geometrical mechanism, he had written at length his dissatisfaction over Ptolemaic astronomy and the use of the equant, so some scholars then purport that it was not unfounded for Copernicus to have rederived the Tusi couple without having seen it as he had clear motive to do so.[73] Also, some scholars that argue Copernicus did commit plagiarism say that by never claiming it as his own, he inherently condemns himself.[74] However, others critique that mathematicians do not normally claim work like other scientists, so declaring a theorem for oneself is an exception and not the norm.[74] Therefore, there is motive and some explanation as to why and how Copernicus did not plagiarize, despite the evidence against him.[72][73][74]
Bennison, Amira K. (2009). The great caliphs : the golden age of the 'Abbasid Empire. New Haven: Yale University Press. p. 204. ISBN978-0-300-15227-2. Hulegu killed the last 'Abbasid caliph but also patronized the foundation of a new observatory at Maragha in Azerbayjan at the instigation of the Persian Shi'i polymath Nasir al-Din Tusi.
Goldschmidt, Arthur; Boum, Aomar (2015). A Concise History of the Middle East. Avalon Publishing. ISBN978-0-8133-4963-3. Hulegu, contrite at the damage he had wrought, patronized the great Persian scholar, Nasiruddin Tusi (died 1274), who saved the lives of many other scientists and artists, accumulated a library of 400000 volumes, and built an astronomical ...
Seyyed Hossein Nasr (2006). Islamic Philosophy from Its Origin to the Present: Philosophy in the Land of Prophecy. State University of New York Press. p. 167. ISBN978-0-7914-6800-5. In fact it was common among Persian Islamic philosophers to write few quatrains on the side often in the spirit of some of the poems of Khayyam singing about the impermanence of the world and its transience and similar themes. One needs to only recall the names of Ibn Sina, Suhrawardi, Nasir al-Din Tusi and Mulla Sadra, who wrote poems along with extensive prose works.
Rodney Collomb, "The rise and fall of the Arab Empire and the founding of Western pre-eminence", Published by Spellmount, 2006. pg 127: "Khawaja Nasr ed-Din Tusi, the Persian, Khorasani, former chief scholar and scientist of"
Seyyed H. Badakhchani. Contemplation and Action: The Spiritual Autobiography of a Muslim Scholar: Nasir al-Din Tusi (In Association With the Institute of Ismaili Studies. I. B. Tauris (December 3, 1999). ISBN1-86064-523-2. page.1: ""Nasir al-Din Abu Ja`far Muhammad b. Muhammad b. Hasan Tusi:, the renowned Persian astronomer, philosopher and theologian"
Mirchandani, Vinnie (2010). The New Polymath: Profiles in Compound-Technology Innovations. John Wiley & Sons. p. 300. ISBN978-0-470-76845-7. Nasir. al-Din. al-Tusi: Stay. Humble. Nasir al-Din al-Tusi, the Persian polymath, talked about humility: "Anyone who does not know and does not know that he does not know is stuck forever in double ...
Ṭūsī, Naṣīr al-Dīn Muḥammad ibn Muḥammad; Badakchani, S. J. (2005), Paradise of Submission: A Medieval Treatise on Ismaili Thought, Ismaili Texts and Translations, vol. 5, London: I.B. Tauris in association with Institute of Ismaili Studies, pp. 2–3, ISBN1-86064-436-8
Holt, P. M.; Lambton, Ann K. S.; Lewis, Bernard (1986). The Cambridge History of Islam Volume 2B, Islamic Society and Civilisation (1st ed.). Cambridge University Press. p. 585. ISBN978-0-521-21949-5. secondly, some very great Shi'i thinkers who were ethnically Persian, such as the Isma'ilis, Abu Hatim Razi and Sijistani in the fourth/tenth century, or the Imamis, Nasir al-DIn Tusi (seventh/thirteenth century) and 'Allama Hilli (seventh-eighth/thirteenth-fourteenth centuries) and many others, were to continue to write in Arabic.
^"Al-Tusi_Nasir biography". www-history.mcs.st-andrews.ac.uk. Retrieved 2018-08-05. One of al-Tusi's most important mathematical contributions was the creation of trigonometry as a mathematical discipline in its own right rather than as just a tool for astronomical applications. In Treatise on the quadrilateral al-Tusi gave the first extant exposition of the whole system of plane and spherical trigonometry. This work is really the first in history on trigonometry as an independent branch of pure mathematics and the first in which all six cases for a right-angled spherical triangle are set forth.
^electricpulp.com. "ṬUSI, NAṢIR-AL-DIN i. Biography – Encyclopaedia Iranica". www.iranicaonline.org. Retrieved 2018-08-05. His major contribution in mathematics (Nasr, 1996, pp. 208-14) is said to be in trigonometry, which for the first time was compiled by him as a new discipline in its own right. Spherical trigonometry also owes its development to his efforts, and this includes the concept of the six fundamental formulas for the solution of spherical right-angled triangles.
^James Winston Morris, "An Arab Machiavelli? Rhetoric, Philosophy and Politics in Ibn Khaldun’s Critique of Sufism", Harvard Middle Eastern and Islamic Review 8 (2009), pp 242–291. [1]Archived 2010-06-20 at the Wayback Machine excerpt from page 286 (footnote 39): "Ibn Khaldun’s own personal opinion is no doubt summarized in his pointed remark (Q 3: 274) that Tusi was better than any other later Iranian scholar". Original Arabic: Muqaddimat Ibn Khaldūn : dirāsah usūlīyah tārīkhīyah / li-Aḥmad Ṣubḥī Manṣūr-al-Qāhirah : Markaz Ibn Khaldūn : Dār al-Amīn, 1998. ISBN977-19-6070-9. Excerpt from Ibn Khaldun is found in the section: الفصل الثالث و الأربعون: في أن حملة العلم في الإسلام أكثرهم العجم (On how the majority who carried knowledge forward in Islam were Persians) In this section, see the sentence where he mentions Tusi as more knowledgeable than other later Persian ('Ajam) scholars: . و أما غيره من العجم فلم نر لهم من بعد الإمام ابن الخطيب و نصير الدين الطوسي كلاما يعول على نهايته في الإصابة. فاعتير ذلك و تأمله تر عجبا في أحوال الخليقة. و الله يخلق ما بشاء لا شريك له الملك و له الحمد و هو على كل شيء قدير و حسبنا الله و نعم الوكيل و الحمد لله.
^Dabashi, Hamid. "Khwajah Nasir al-Din Tusi: The philosopher/vizier and the intellectual climate of his times". Routledge History of World Philosophies. Vol I. History of Islamic Philosophy. Seyyed Hossein Nasr and Oliver Leaman (eds.) London: Routledge. 1996. p. 529
^Siddiqi, Bakhtyar Husain. "Nasir al-Din Tusi". A History of Islamic Philosophy. Vol 1. M. M. Sharif (ed.). Wiesbaden:: Otto Harrossowitz. 1963. p. 565
^Lagerlund, Henrik (2010). Encyclopedia of Medieval Philosophy: Philosophy Between 500 and 1500. Springer Science & Business Media. p. 825. ISBN978-1-4020-9728-7.
^Michael Axworthy, A History of Iran: Empire of the Mind, (Basic Books, 2008), 104.
^ abcH. Daiber, F.J. Ragep, "Tusi" in Encyclopaedia of Islam. Edited by: P. Bearman, Th. Bianquis, C.E. Bosworth, E. van Donzel and W.P. Heinrichs. Brill, 2007. Brill Online. Quote: "Tusi's prose writings, which number over 150 works, represent one of the largest collections by a single Islamic author. Writing in both Arabic and Persian, Nasir al-Din dealt with both religious ("Islamic") topics and non-religious or secular subjects ("the ancient sciences")."
^Seyyed Hossein Nasr. The Islamic Intellectual Tradition in Persia. Curson Press, 1996. See p. 208: "Nearly 150 treatises and letters by Nasir al-Din al-Tusi are known, of which twenty-five are in Persian and the rest in Arabic. There is even a treatise on geomancy that Tusi wrote in Arabic, Persian, and Turkish, demonstrating his mastery of all three languages. It is said that he also knew Greek. His writings concern nearly every branch of the Islamic sciences, from astronomy to philosophy and from the occult sciences to theology."
^George Saliba, '[2]', Arabic Sciences and Philosophy, v.3 1993, pp.161-203
^George Saliba, 'Revisiting the Astronomical Contacts Between the World of Islam and Renaissance Europe: The Byzantine Connection', 'The occult sciences in Byzantium', 2006, p.368
^F. Jamil Ragep (2001), "Tusi and Copernicus: The Earth's Motion in Context", Science in Context14 (1-2), p. 145–163. Cambridge University Press.
^Ragep, Jamil, Nasir al-Din Tusi’s Memoir on Astronomy (al-Tadhkira fi `ilm al-hay’ a) Edition, Translation, Commentary, and Introduction. 2 vols. Sources in the History of Mathematics and Physical Sciences. New York: Springer-Verlag, 1993. pp. 129
^O'Connor, J. J.; Robertson, E. F. (November 2002). "Galileo Galilei". University of St Andrews. Archived from the original on 2012-05-30. Retrieved 2007-01-08.
^Bosworth, Clifford E.; Asimov (2003). History of civilizations of Central Asia. Vol. 4. Motilal Banarsidass. p. 190. ISBN81-208-1596-3.
^Hayes, John R.; Badeau, John S. (1983). The genius of Arab civilization : source of Renaissance (2nd ed.). Taylor & Francis. p. 156. ISBN0-262-08136-9.
^http://www-history.mcs.st-andrews.ac.uk/Biographies/Al-Tusi_Nasir.html,"One[permanent dead link] of al-Tusi's most important mathematical contributions was the creation of trigonometry as a mathematical discipline in its own right rather than as just a tool for astronomical applications. In Treatise on the quadrilateral al-Tusi gave the first extant exposition of the whole system of plane and spherical trigonometry. This work is really the first in history on trigonometry as an independent branch of pure mathematics and the first in which all six cases for a right-angled spherical triangle are set forth"/
^ abBerggren, J. Lennart (2007). "Mathematics in Medieval Islam". The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook. Princeton University Press. p. 518. ISBN978-0-691-11485-9.
^Also the 'sine law' (of geometry and trigonometry, applicable to spherical trigonometry) is attributed, among others, to Alkhujandi. (The three others are Abul Wafa Bozjani, Nasiruddin Tusi, and Abu Nasr Mansur). Razvi, Syed Abbas Hasan (1991) A history of science, technology, and culture in Central Asia, Volume 1 University of Peshawar, Peshawar, Pakistan, page 358, OCLC26317600
^Bijli suggests that three mathematicians are in contention for the honor, Alkhujandi, Abdul-Wafa and Mansur, leaving out Nasiruddin Tusi. Bijli, Shah Muhammad and Delli, Idarah-i Adabiyāt-i (2004) Early Muslims and their contribution to science: ninth to fourteenth century Idarah-i Adabiyat-i Delli, Delhi, India, page 44, OCLC66527483
^Kirchner, E. (2013). "Color theory and color order in medieval Islam: A review". Color Research & Application. 40 (1): 5-16. doi:10.1002/col.21861.
^ abNasir ad-Din Tusi (1964) The Nasirean Ethics (translator: G.M. Wickens). London: Allen & Unwin, p. 44.
^Nasir ad-Din Tusi (1964) The Nasirean Ethics (translator: G.M. Wickens). London: Allen & Unwin, p. 45.
^Nasir ad-Din Tusi (1964) The Nasirean Ethics (translator: G.M. Wickens). London: Allen & Unwin, p. 45f.
^Nasir ad-Din Tusi (1964) The Nasirean Ethics (translator: G.M. Wickens). London: Allen & Unwin, p. 42 (emphasis added).
^Ahmad Y. al-Hassan, Conservation of Mass in Fourteenth Century Chemistry, History of Science, vol. 17, pp. 65-80, 1979.
^Abdelhamid I. Sabra, The Development of the Concept of Mass in the Arabic-Islamic Golden Age: Physics, Metaphysics, and Chemistry, Archiv für Geschichte der Philosophie, vol. 84, no. 2, pp. 115-136, 2002
^Roshdi Rashed, Nasir al-Din al-Tusi and the Problem of the Equilibrium of Weights, Arabic Sciences and Philosophy, vol. 1, no. 2, pp. 165-183, 1991.
^Babaev, E. S. (2003). "2003ASPC..289..157B Page 157". The Proceedings of the IAU 8th Asian-Pacific Regional Meeting. 289. Adsabs.harvard.edu: 157. Bibcode:2003ASPC..289..157B.
Hamantashprune hamantashen buatan rumahJenisKue atau pastriTempat asalKomunitas Yahudi Ashkenazi. Sekarang sebagian besar di Israel dan Amerika Serikat.VariasiIsian: biasanya biji poppySunting kotak info • L • BBantuan penggunaan templat ini Hamantash (bahasa Yiddi: המן טאש, juga disebut hamentasch, pl. hamantashen atau hamentaschen; (Ibrani) oznei Haman) adalah sebuah kue atau pastri isi yang dikenal karena bentuk segitiganya, biasanya dikaitkan dengan hari raya Yahud...
British political scientist Frank BealeyFrank BealeyBornFrank William Bealey(1922-08-31)31 August 1922BilstonDied18 January 2013(2013-01-18) (aged 90)EdinburghNationalityEnglishCitizenshipBritishEducationThe London School of EconomicsKnown forFounded of the academic study of politicsScientific careerInstitutionsRoyal Academy of Turku, University of Manchester, University of Aberdeen, Masaryk University Frank William Bealey (31 August 1922 – 18 January 2013) was a British political...
Abuse of members of the same household Medical conditionDomestic violenceOther namesDomestic abuse, family violenceA purple ribbon is used to promote awareness of domestic violence.Part of a series onViolence against women Killing Bride burning Dowry death Honor killing Femicide Infanticide Matricide Pregnant women Sati Sororicide Uxoricide Sexual assault and rape Causes of sexual violence Child sexual initiation Estimates of sexual violence Forced prostitution Cybersex trafficking Human traf...
Questa voce o sezione sull'argomento attori francesi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Pierre Étaix Oscar al miglior cortometraggio 1963 Pierre Étaix (Roanne, 23 novembre 1928 – Parigi, 14 ottobre 2016) è stato un comico, attore, regista e clown francese. Fu sposato con Annie Fratellini...
Questa voce o sezione sull'argomento centri abitati del Piemonte non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Calusocomune Caluso – VedutaVeduta LocalizzazioneStato Italia Regione Piemonte Città metropolitana Torino AmministrazioneSindacoMaria Rosa Cena (lista civica) dal 26-5-2014 (2º mandato dal 27-5-2019) Territ...
Novel by Nicholas Sparks Not to be confused with The Lucky Ones (book), by Rachel Cusk. The Lucky One First editionAuthorNicholas SparksCountryUnited StatesLanguageEnglishGenreRomanceDramaWarPublisherGrand Central PublishingPublication date2008Media typePrint (hardcover)Pages386 ppISBN0-446-57993-9OCLC233573959Dewey Decimal813/.54 22LC ClassPS3569.P363 L83 2008Preceded byThe Choice The Lucky One is a 2008 romance novel by American writer Nicholas Sparks. U.S. Marine Logan...
Inghilterra Uniformi di gara Casa Trasferta Sport Calcio Federazione Football Association Confederazione UEFA Codice FIFA ENG Soprannome Three Lions(Tre leoni) Selezionatore Gareth Southgate Record presenze Peter Shilton (125) Capocannoniere Harry Kane (62) Ranking FIFA 4º (4 aprile 2024)[1] Sponsor tecnico Nike Esordio internazionale Scozia 0 - 0 Inghilterra Glasgow, Regno Unito, 30 novembre 1872 Migliore vittoria Irlanda 0 - 13 Inghilterra Belfast, Regno Unito, 18 febbraio 1882 Pe...
Disambiguazione – Se stai cercando altri significati, vedi Sciopero (disambigua). Questa voce o sezione sull'argomento diritto ha un'ottica geograficamente limitata. Contribuisci ad ampliarla o proponi le modifiche in discussione. Se la voce è approfondita, valuta se sia preferibile renderla una voce secondaria, dipendente da una più generale. Segui i suggerimenti del progetto di riferimento. Lavoratori in sciopero durante l'Autunno caldo del 1969 Il Quarto Stato, di Giuseppe Pelliz...
Multimedia container open file format An editor has performed a search and found that sufficient sources exist to establish the subject's notability. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Matroska – news · newspapers · books · scholar · JSTOR (April 2024) (Learn how and when to remove this message) This article relies excessively on references to primary ...
烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...
Jacques AugendreJacques Augendre à l'arrivée du Tour de France à Strasbourg en 2006BiographieNaissance 28 avril 1925 (99 ans)ParisNationalité françaiseActivité Journaliste sportifAutres informationsSport Sport cyclistemodifier - modifier le code - modifier Wikidata Jacques Barthélémy Augendre est un journaliste sportif, spécialisé dans le cyclisme, né le 28 avril 1925 dans le 18e arrondissement de Paris. Il commente le tour de France cycliste dès 1949, ce qui en fait un ...
Species of edible plant For the software, see Celery (software). This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (May 2022) CeleryCelery for saleGenusApiumSpeciesApium graveolensCultivar groupDulce Group Celery (Apium graveolens Dulce Group or Apium graveolens var. dulce)[1] is a cultivated plant belonging to the species Apium graveolens in...
Questa voce o sezione sull'argomento Formula 1 non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Gran Premio di SiracusaSport Automobilismo Paese Italia LuogoSiracusa Impiantocircuito di Siracusa StoriaFondazione1951 Soppressione1967 Numero edizioni16 Ultimo vincitore Mike Parkes ex aequo Ludovico Scar...
كونيسفيل الإحداثيات 42°23′14″N 74°22′35″W / 42.387222222222°N 74.376388888889°W / 42.387222222222; -74.376388888889 [1] تقسيم إداري البلد الولايات المتحدة[2] التقسيم الأعلى مقاطعة شوهاري خصائص جغرافية المساحة 39.87 ميل مربع ارتفاع 444 متر عدد السكان عدد السكان 6...
سطامية الصغرى سطاميه كوچك - قرية - تقسيم إداري البلد إيران[1] المحافظة محافظة خوزستان المقاطعة إقليم الأحواز قسم الناحية المركزية لمقاطعة الأهواز التقسيم الإداري الإيراني قسم إسماعيلية الريفي إحداثيات 31°15′36″N 48°28′43″E / 31.26°N 48.47861°E / 31.26; 48.4...