Moment (physics)

A moment is a mathematical expression involving the product of a distance and a physical quantity such as a force or electric charge. Moments are usually defined with respect to a fixed reference point and refer to physical quantities located some distance from the reference point. For example, the moment of force, often called torque, is the product of a force on an object and the distance from the reference point to the object. In principle, any physical quantity can be multiplied by a distance to produce a moment. Commonly used quantities include forces, masses, and electric charge distributions; a list of examples is provided later.

Elaboration

In its most basic form, a moment is the product of the distance to a point, raised to a power, and a physical quantity (such as force or electrical charge) at that point:

where is the physical quantity such as a force applied at a point, or a point charge, or a point mass, etc. If the quantity is not concentrated solely at a single point, the moment is the integral of that quantity's density over space:

where is the distribution of the density of charge, mass, or whatever quantity is being considered.

More complex forms take into account the angular relationships between the distance and the physical quantity, but the above equations capture the essential feature of a moment, namely the existence of an underlying or equivalent term. This implies that there are multiple moments (one for each value of n) and that the moment generally depends on the reference point from which the distance is measured, although for certain moments (technically, the lowest non-zero moment) this dependence vanishes and the moment becomes independent of the reference point.

Each value of n corresponds to a different moment: the 1st moment corresponds to n = 1; the 2nd moment to n = 2, etc. The 0th moment (n = 0) is sometimes called the monopole moment; the 1st moment (n = 1) is sometimes called the dipole moment, and the 2nd moment (n = 2) is sometimes called the quadrupole moment, especially in the context of electric charge distributions.

Examples

  • The moment of force, or torque, is a first moment: , or, more generally, .
  • Similarly, angular momentum is the 1st moment of momentum: . Momentum itself is not a moment.
  • The electric dipole moment is also a 1st moment: for two opposite point charges or for a distributed charge with charge density .

Moments of mass:

  • The total mass is the zeroth moment of mass.
  • The center of mass is the 1st moment of mass normalized by total mass: for a collection of point masses, or for an object with mass distribution .
  • The moment of inertia is the 2nd moment of mass: for a point mass, for a collection of point masses, or for an object with mass distribution . The center of mass is often (but not always) taken as the reference point.

Multipole moments

Assuming a density function that is finite and localized to a particular region, outside that region a 1/r potential may be expressed as a series of spherical harmonics:

The coefficients are known as multipole moments, and take the form:

where expressed in spherical coordinates is a variable of integration. A more complete treatment may be found in pages describing multipole expansion or spherical multipole moments. (The convention in the above equations was taken from Jackson[1] – the conventions used in the referenced pages may be slightly different.)

When represents an electric charge density, the are, in a sense, projections of the moments of electric charge: is the monopole moment; the are projections of the dipole moment, the are projections of the quadrupole moment, etc.

Applications of multipole moments

The multipole expansion applies to 1/r scalar potentials, examples of which include the electric potential and the gravitational potential. For these potentials, the expression can be used to approximate the strength of a field produced by a localized distribution of charges (or mass) by calculating the first few moments. For sufficiently large r, a reasonable approximation can be obtained from just the monopole and dipole moments. Higher fidelity can be achieved by calculating higher order moments. Extensions of the technique can be used to calculate interaction energies and intermolecular forces.

The technique can also be used to determine the properties of an unknown distribution . Measurements pertaining to multipole moments may be taken and used to infer properties of the underlying distribution. This technique applies to small objects such as molecules,[2][3] but has also been applied to the universe itself,[4] being for example the technique employed by the WMAP and Planck experiments to analyze the cosmic microwave background radiation.

History

A lever in balance

In works believed to stem from Ancient Greece, the concept of a moment is alluded to by the word ῥοπή (rhopḗ, lit. "inclination") and composites like ἰσόρροπα (isorropa, lit. "of equal inclinations").[5][6][7] The context of these works is mechanics and geometry involving the lever.[8] In particular, in extant works attributed to Archimedes, the moment is pointed out in phrasings like:

"Commensurable magnitudes (σύμμετρα μεγέθεα) [A and B] are equally balanced (ἰσορροπέοντι)[a] if their distances [to the center Γ, i.e., ΑΓ and ΓΒ] are inversely proportional (ἀντιπεπονθότως) to their weights (βάρεσιν)."[6][9]

Moreover, in extant texts such as The Method of Mechanical Theorems, moments are used to infer the center of gravity, area, and volume of geometric figures.

In 1269, William of Moerbeke translates various works of Archimedes and Eutocious into Latin. The term ῥοπή is transliterated into ropen.[6]

Around 1450, Jacobus Cremonensis translates ῥοπή in similar texts into the Latin term momentum (lit. "movement"[10]).[11][6]: 331  The same term is kept in a 1501 translation by Giorgio Valla, and subsequently by Francesco Maurolico, Federico Commandino, Guidobaldo del Monte, Adriaan van Roomen, Florence Rivault, Francesco Buonamici, Marin Mersenne[5], and Galileo Galilei. That said, why was the word momentum chosen for the translation? One clue, according to Treccani, is that momento in Medieval Italy, the place the early translators lived, in a transferred sense meant both a "moment of time" and a "moment of weight" (a small amount of weight that turns the scale).[b]

In 1554, Francesco Maurolico clarifies the Latin term momentum in the work Prologi sive sermones. Here is a Latin to English translation as given by Marshall Clagett:[6]

"[...] equal weights at unequal distances do not weigh equally, but unequal weights [at these unequal distances may] weigh equally. For a weight suspended at a greater distance is heavier, as is obvious in a balance. Therefore, there exists a certain third kind of power or third difference of magnitude—one that differs from both body and weight—and this they call moment.[c] Therefore, a body acquires weight from both quantity [i.e., size] and quality [i.e., material], but a weight receives its moment from the distance at which it is suspended. Therefore, when distances are reciprocally proportional to weights, the moments [of the weights] are equal, as Archimedes demonstrated in The Book on Equal Moments.[d] Therefore, weights or [rather] moments like other continuous quantities, are joined at some common terminus, that is, at something common to both of them like the center of weight, or at a point of equilibrium. Now the center of gravity in any weight is that point which, no matter how often or whenever the body is suspended, always inclines perpendicularly toward the universal center.

In addition to body, weight, and moment, there is a certain fourth power, which can be called impetus or force.[e] Aristotle investigates it in On Mechanical Questions, and it is completely different from [the] three aforesaid [powers or magnitudes]. [...]"

in 1586, Simon Stevin uses the Dutch term staltwicht ("parked weight") for momentum in De Beghinselen Der Weeghconst.

In 1632, Galileo Galilei publishes Dialogue Concerning the Two Chief World Systems and uses the Italian momento with many meanings, including the one of his predecessors.[12]

In 1643, Thomas Salusbury translates some of Galilei's works into English. Salusbury translates Latin momentum and Italian momento into the English term moment.[f]

In 1765, the Latin term momentum inertiae (English: moment of inertia) is used by Leonhard Euler to refer to one of Christiaan Huygens's quantities in Horologium Oscillatorium.[13] Huygens 1673 work involving finding the center of oscillation had been stimulated by Marin Mersenne, who suggested it to him in 1646.[14][15]

In 1811, the French term moment d'une force (English: moment of a force) with respect to a point and plane is used by Siméon Denis Poisson in Traité de mécanique.[16] An English translation appears in 1842.

In 1884, the term torque is suggested by James Thomson in the context of measuring rotational forces of machines (with propellers and rotors).[17][18] Today, a dynamometer is used to measure the torque of machines.

In 1893, Karl Pearson uses the term n-th moment and in the context of curve-fitting scientific measurements.[19] Pearson wrote in response to John Venn, who, some years earlier, observed a peculiar pattern involving meteorological data and asked for an explanation of its cause.[20] In Pearson's response, this analogy is used: the mechanical "center of gravity" is the mean and the "distance" is the deviation from the mean. This later evolved into moments in mathematics. The analogy between the mechanical concept of a moment and the statistical function involving the sum of the nth powers of deviations was noticed by several earlier, including Laplace, Kramp, Gauss, Encke, Czuber, Quetelet, and De Forest.[21]

See also

Notes

  1. ^ An alternative translation is "have equal moments" as used by Francesco Maurolico in the 1500s.[6] A literal translation is "have equal inclinations".
  2. ^ Treccani writes in its entry on moménto: "[...] alla tradizione medievale, nella quale momentum significava, per lo più, minima porzione di tempo, la più piccola parte dell’ora (precisamente, 1/40 di ora, un minuto e mezzo), ma anche minima quantità di peso, e quindi l’ago della bilancia (basta l’applicazione di un momento di peso perché si rompa l’equilibrio e la bilancia tracolli in un momento);"
  3. ^ In Latin: momentum.
  4. ^ The modern translation of this book is "on the equilibrium of planes". The translation "on equal moments (of planes)" as used by Maurolico is also echoed in his four-volume book called De momentis aequalibus ("about equal moments") where he applies Archimedes' ideas to solid bodies.
  5. ^ In Latin: impetus or vis. This fourth power was the intellectual precursor to the English Latinism momentum, also called quantity of motion.
  6. ^ This is very much in line with other Latin -entum words such as documentum, monumentum, or argumentum which turned into document, monument, and argument in French and English.

References

  1. ^ J. D. Jackson, Classical Electrodynamics, 2nd edition, Wiley, New York, (1975). p. 137
  2. ^ Spackman, M. A. (1992). "Molecular electric moments from x-ray diffraction data". Chemical Reviews. 92 (8): 1769–1797. doi:10.1021/cr00016a005.
  3. ^ Dittrich and Jayatilaka, Reliable Measurements of Dipole Moments from Single-Crystal Diffraction Data and Assessment of an In-Crystal Enhancement, Electron Density and Chemical Bonding II, Theoretical Charge Density Studies, Stalke, D. (Ed), 2012, https://www.springer.com/978-3-642-30807-9
  4. ^ Baumann, Daniel (2009). "TASI Lectures on Inflation". arXiv:0907.5424 [hep-th].
  5. ^ a b Mersenne, Marin (1634). Les Méchaniques de Galilée. Paris. pp. 7–8.
  6. ^ a b c d e f Clagett, Marshall (1964–84). Archimedes in the Middle Ages (5 vols in 10 tomes). Madison, WI: University of Wisconsin Press, 1964; Philadelphia: American Philosophical Society, 1967–1984.
  7. ^ ῥοπή. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project
  8. ^ Clagett, Marshall (1959). The Science of Mechanics in the Middle Ages. Madison, WI: University of Wisconsin Press.
  9. ^ Dijksterhuis, E. J. (1956). Archimedes. Copenhagen: E. Munksgaard. p. 288.
  10. ^ "moment". Oxford English Dictionary. 1933.
  11. ^ Venezia, Biblioteca Nazionale Marciana, lat. Z. 327 (=1842). Biblioteca Marciana. c. 1450.
  12. ^ Galluzzi, Paolo (1979). Momento. Studi Galileiani. Rome: Edizioni dell' Ateneo & Bizarri.
  13. ^ Euler, Leonhard (1765). Theoria motus corporum solidorum seu rigidorum: Ex primis nostrae cognitionis principiis stabilita et ad omnes motus, qui in huiusmodi corpora cadere possunt, accommodata [The theory of motion of solid or rigid bodies: established from first principles of our knowledge and appropriate for all motions which can occur in such bodies.] (in Latin). Rostock and Greifswald (Germany): A. F. Röse. p. 166. ISBN 978-1-4297-4281-8. From page 166: "Definitio 7. 422. Momentum inertiae corporis respectu eujuspiam axis est summa omnium productorum, quae oriuntur, si singula corporis elementa per quadrata distantiarum suarum ab axe multiplicentur." (Definition 7. 422. A body's moment of inertia with respect to any axis is the sum of all of the products, which arise, if the individual elements of the body are multiplied by the square of their distances from the axis.)
  14. ^ Huygens, Christiaan (1673). Horologium oscillatorium, sive de Motu pendulorum ad horologia aptato demonstrationes geometricae (in Latin). p. 91.
  15. ^ Huygens, Christiaan (1977–1995). "Center of Oscillation (translation)". Translated by Mahoney, Michael S. Retrieved 22 May 2022.
  16. ^ Poisson, Siméon-Denis (1811). Traité de mécanique, tome premier. p. 67.
  17. ^ Thompson, Silvanus Phillips (1893). Dynamo-electric machinery: A Manual For Students Of Electrotechnics (4th ed.). New York, Harvard publishing co. p. 108.
  18. ^ Thomson, James; Larmor, Joseph (1912). Collected Papers in Physics and Engineering. University Press. p. civ.
  19. ^ Pearson, Karl (October 1893). "Asymmetrical Frequency Curves". Nature. 48 (1252): 615–616. Bibcode:1893Natur..48..615P. doi:10.1038/048615a0. S2CID 4057772.
  20. ^ Venn, J. (September 1887). "The Law of Error". Nature. 36 (931): 411–412. Bibcode:1887Natur..36..411V. doi:10.1038/036411c0. S2CID 4098315.
  21. ^ Walker, Helen M. (1929). Studies in the history of statistical method, with special reference to certain educational problems. Baltimore, Williams & Wilkins Co. p. 71.

Read other articles:

No debe confundirse con Estación sencilla Santa Isabel la estación del sistema TransMilenio de Bogotá. Santa Isabel Estación Santa IsabelUbicaciónCoordenadas 33°26′49″S 70°37′50″O / -33.447075, -70.63045Dirección Av. General Bustamante con Avenida Santa IsabelComuna ProvidenciaDatos de la estaciónInauguración 5 de abril de 1997Servicios N.º de andenes 2N.º de vías 2Operador Metro de SantiagoServicios detalladosClasificación Posición SubterráneaColor  ...

 

Ellingen. Ellingen adalah kota yang terletak di distrik Weißenburg-Gunzenhausen di Bavaria, Jerman. Kota Ellingen memiliki luas sebesar 31.25 km² . Ellingen pada tahun 2006, memiliki penduduk sebanyak 3.703 jiwa. lbsKota dan kotamadya di Weissenburg-GunzenhausenAbsberg | Alesheim | Bergen | Burgsalach | Dittenheim | Ellingen | Ettenstatt | Gnotzheim | Gunzenhausen | Haundorf | Heidenheim | Höttingen | Langenaltheim | Mar...

 

This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-party sources. (January 2016) (Learn how and when to remove this template message) Graduate School of Media Communications and Performing ArtsAlta Scuola in Media, Comunicazione e SpettacoloOther nameALMEDTypePrivateEstablished2002 ...

Segunda División 2004-2005Liga Adelante 2004-2005 Competizione Segunda División Sport Calcio Edizione 74ª Organizzatore RFEF Date dal 28 agosto 2004al 18 giugno 2005 Luogo  Spagna Partecipanti 22 Formula Girone all'italiana Sito web www.lfp.es Risultati Vincitore  Cadice Promozioni  Cadice Celta Vigo Alavés Retrocessioni  Córdoba Terrassa Salamanca UDS Pontevedra Cronologia della competizione 2003-2004 2005-2006 Manuale L'edizione 200...

 

Demographics of South KoreaPopulation pyramid of South Korea in 2022Population51,430,018 (2023 est.)Growth rate−0.24% (2022 est.)Birth rate4.5 births/1,000 population (2023 est.)Death rate6.9 deaths/1,000 population (2023 est.)Life expectancy82.97 years • male79.88 years • female86.24 years (2022 est.)Fertility rate0.72 children born/woman (2023)[1]Infant mortality rate2.87 deaths/1,000 live birthsNet migration rate2.63 migrant(s)/1,000 population (2022...

 

American politician & military pilot (born 1966) Martha McSallyOfficial portrait, 2019United States Senatorfrom ArizonaIn officeJanuary 3, 2019 – December 2, 2020Appointed byDoug DuceyPreceded byJon KylSucceeded byMark KellyMember of the U.S. House of Representativesfrom Arizona's 2nd districtIn officeJanuary 3, 2015 – January 3, 2019Preceded byRon BarberSucceeded byAnn Kirkpatrick Personal detailsBornMartha Elizabeth McSally (1966-03-22) March 22, 1966 (...

Tour by the Indian Cricket Team in Sri Lanka during 2021 Indian cricket team in Sri Lanka in 2012    Sri Lanka IndiaDates 21 July – 7 AugustCaptains Mahela JayawardeneAngelo Mathews(5th ODI and Only T20I) MS DhoniOne Day International seriesResults India won the 5-match series 4–1Most runs Kumar Sangakkara (206) Virat Kohli (296)Most wickets Thisara Perera (8)Lasith Malinga (8) Irfan Pathan (8)Player of the series Virat Kohli (Ind)Twenty20 International seriesResults India ...

 

Bassin de LondresPrésentationType Bassin sédimentaireLocalisationLocalisation  Royaume-UniCoordonnées 51° 45′ 50″ N, 0° 26′ 42″ Emodifier - modifier le code - modifier Wikidata Carte géologique du Sud-Est de l’Angleterre et des régions environnant la Manche, montrant le bassin de Londres et ses environs. Le bassin de Londres est un bassin allongé, grossièrement triangulaire d'environ 250 km de long sur lequel se trouve Londres et une ...

 

Matt PottingerPottinger pada 2011 Wakil Penasehat Keamanan Nasional Amerika SerikatPetahanaMulai menjabat 22 September 2019PresidenDonald TrumpPendahuluCharles KuppermanPenggantiPetahana Informasi pribadiLahir1973/1974 (umur 50–51)Suami/istriYen PottingerAnak2Orang tuaJohn Stanley Pottinger (ayah)PendidikanUniversitas Massachusetts, Amherst (Sarjana)Karier militerPihak Amerika SerikatDinas/cabang Korps Marinir Amerika SerikatMasa dinas2005–2010 (aktif)2010–kini (...

This article is about a shopping centre in Melbourne, Australia. For the railway station, see Melbourne Central railway station. Shopping mall in Victoria, AustraliaMelbourne CentralLocationMelbourne, Victoria, AustraliaCoordinates37°48′37.42″S 144°57′47.32″E / 37.8103944°S 144.9631444°E / -37.8103944; 144.9631444Opening date1991; 33 years ago (1991)[1]DeveloperKumagai GumiManagementGPT GroupOwnerGPT Group[2]ArchitectKisho...

 

Biblical saint This article is about a figure in the Bible. For other uses, see John Mark (disambiguation). John MarkSt. Mark by Frans Hals, c. 1625Bishop of Byblos[1]DiedFirst century ADVenerated inRoman Catholic Church, Eastern Catholic ChurchesFeastSeptember 27[1] John Mark (Greek: Ἰωάννης Μάρκος, romanized: Iōannēs Markos) is named in the Acts of the Apostles as an assistant accompanying Paul and Barnabas on their missionary journeys. Tradit...

 

American publicly funded non-profit corporation This article needs to be updated. Please help update this article to reflect recent events or newly available information. (April 2023) Corporation for Public BroadcastingCompany typePrivate, non-profit[1][2]Industry Television Radio FoundedNovember 7, 1967; 56 years ago (1967-11-07)HeadquartersWashington, D.C., U.S.Area servedUnited StatesKey peoplePatricia Harrison (president & CEO)Number of employees100We...

American actor (1887–1966) William FrawleyFrawley in 1951BornWilliam Clement Frawley(1887-02-26)February 26, 1887Burlington, Iowa, U.S.DiedMarch 3, 1966(1966-03-03) (aged 79)Los Angeles, California, U.S.Resting placeSan Fernando Mission CemeteryOther namesBill FrawleyOccupationActorYears active1914–1965Spouse Edna Louise Broedt ​ ​(m. 1914; div. 1927)​ William Clement Frawley (February 26, 1887 – March 3, 1966) was an Ameri...

 

Ability of a firm to raise the market price of a commodity over marginal cost Competition law Basic concepts History of competition law Monopoly and oligopoly Coercive monopoly Natural monopoly Barriers to entry Herfindahl–Hirschman index Market concentration Market power SSNIP test Relevant market Merger control Anti-competitive practices Monopolization Collusion Formation of cartels Price fixing (cases) Bid rigging Tacit collusion Product bundling and tying Refusal to deal Group boycott E...

 

Fenolftalein Nama Nama IUPAC 3,3-bis(4-hydroxyphenyl)isobenzofuran-1(3H)-one Penanda Nomor CAS 77-09-8 Y Model 3D (JSmol) Gambar interaktif 3DMet {{{3DMet}}} ChEMBL ChEMBL63857 Y ChemSpider 4600 Y DrugBank DB04824 N Nomor EC KEGG D05456 Y PubChem CID 4764 Nomor RTECS {{{value}}} UNII 6QK969R2IF N CompTox Dashboard (EPA) DTXSID0021125 InChI InChI=1S/C20H14O4/c21-15-9-5-13(6-10-15)20(14-7-11-16(22)12-8-14)18-4-2-1-3-17(18)19(23)24-20/h1-12,21-22H YKey: K...

Town in Kota Tinggi, Johor, Malaysia Tanjung Balau Tanjung Balau is a beach town in Kota Tinggi District, Johor, Malaysia. In April 2019, Johor Marine Department detected an oil spill off the coast of Tanjung Balau, covering 4 mautical miles from an estimated 300 tonnes of spilled marine fuel oil.[1] Tourist attractions Tanjung Balau Beach Tanjung Balau Fishermen Museum[2] Wikimedia Commons has media related to Tanjung Balau Beach. References ^ Md Sani, Mohd Sabran (19 April 2...

 

Genre of music Not to be confused with New wave music. New-ageStylistic originsElectronicambientfolkworldclassicalkrautrockrockeasy listeningminimalprogressive rockCultural origins1960s and early 1970s, Europe and United StatesSubgenres Space music biomusic progressive electronic Neoclassical new-age music Fusion genresCeltic fusionOther topics New Age meditation environmentalism List of new-age music artists vaporwave New-age is a genre of music intended to create artistic inspiration, relax...

 

1955 South Korean filmPiagolHangul피아골Revised RomanizationPiagolMcCune–ReischauerP'iagol Directed byLee Kang-cheonWritten byKim Chong Hwan (김종환)Produced byKim Byeong-kiStarringKim Jin-kyu Lee Ye-chun (이예춘)CinematographyKang Yeong Hwa (강영화)Edited byYang Ju Nam (양주남)Music byKwak In Geun (곽인건)Release date September 23, 1955 (1955-09-23) Running time110 minutesCountrySouth KoreaLanguageKorean Piagol (Korean: 피아골) is a 1955 South K...

Self-awareness about thinking, higher-order thinking skills Metacognition is an awareness of one's thought processes and an understanding of the patterns behind them. The term comes from the root word meta, meaning beyond, or on top of.[1] Metacognition can take many forms, such as reflecting on one's ways of thinking, and knowing when and how oneself and others use particular strategies for problem-solving.[1][2] There are generally two components of metacognition: (1...

 

Severo Ochoa nel 1958 Premio Nobel per la medicina 1959 Severo Ochoa de Albornoz (Luarca, 24 settembre 1905 – Madrid, 1º novembre 1993) è stato un biochimico spagnolo naturalizzato statunitense nel 1956. Indice 1 Biografia 2 Carriera 3 Altri progetti 4 Collegamenti esterni Biografia Ochoa è nata a Luarca, Nel 1923 frequentò la Facoltà di Medicina dell'Università di Madrid. Studiò con padre Pedro Arrupe e Juan Negrín fu il suo insegnante. Negrín e Ochoa e un altro studente, e Jo...