Finite intersection property

In general topology, a branch of mathematics, a non-empty family A of subsets of a set is said to have the finite intersection property (FIP) if the intersection over any finite subcollection of is non-empty. It has the strong finite intersection property (SFIP) if the intersection over any finite subcollection of is infinite. Sets with the finite intersection property are also called centered systems and filter subbases.[1]

The finite intersection property can be used to reformulate topological compactness in terms of closed sets; this is its most prominent application. Other applications include proving that certain perfect sets are uncountable, and the construction of ultrafilters.

Definition

Let be a set and a nonempty family of subsets of ; that is, is a subset of the power set of . Then is said to have the finite intersection property if every nonempty finite subfamily has nonempty intersection; it is said to have the strong finite intersection property if that intersection is always infinite.[1]

In symbols, has the FIP if, for any choice of a finite nonempty subset of , there must exist a point Likewise, has the SFIP if, for every choice of such , there are infinitely many such .[1]

In the study of filters, the common intersection of a family of sets is called a kernel, from much the same etymology as the sunflower. Families with empty kernel are called free; those with nonempty kernel, fixed.[2]

Families of examples and non-examples

The empty set cannot belong to any collection with the finite intersection property.

A sufficient condition for the FIP intersection property is a nonempty kernel. The converse is generally false, but holds for finite families; that is, if is finite, then has the finite intersection property if and only if it is fixed.

Pairwise intersection

The finite intersection property is strictly stronger than pairwise intersection; the family has pairwise intersections, but not the FIP.

More generally, let be a positive integer greater than unity, , and . Then any subset of with fewer than elements has nonempty intersection, but lacks the FIP.

End-type constructions

If is a decreasing sequence of non-empty sets, then the family has the finite intersection property (and is even a π–system). If the inclusions are strict, then admits the strong finite intersection property as well.

More generally, any that is totally ordered by inclusion has the FIP.

At the same time, the kernel of may be empty: if , then the kernel of is the empty set. Similarly, the family of intervals also has the (S)FIP, but empty kernel.

"Generic" sets and properties

The family of all Borel subsets of with Lebesgue measure has the FIP, as does the family of comeagre sets. If is an infinite set, then the Fréchet filter (the family ) has the FIP. All of these are free filters; they are upwards-closed and have empty infinitary intersection.[3][4]

If and, for each positive integer the subset is precisely all elements of having digit in the th decimal place, then any finite intersection of is non-empty — just take in those finitely many places and in the rest. But the intersection of for all is empty, since no element of has all zero digits.

Extension of the ground set

The (strong) finite intersection property is a characteristic of the family , not the ground set . If a family on the set admits the (S)FIP and , then is also a family on the set with the FIP (resp. SFIP).

Generated filters and topologies

If are sets with then the family has the FIP; this family is called the principal filter on generated by . The subset has the FIP for much the same reason: the kernels contain the non-empty set . If is an open interval, then the set is in fact equal to the kernels of or , and so is an element of each filter. But in general a filter's kernel need not be an element of the filter.

A proper filter on a set has the finite intersection property. Every neighbourhood subbasis at a point in a topological space has the FIP, and the same is true of every neighbourhood basis and every neighbourhood filter at a point (because each is, in particular, also a neighbourhood subbasis).

Relationship to π-systems and filters

A π–system is a non-empty family of sets that is closed under finite intersections. The set of all finite intersections of one or more sets from is called the π–system generated by , because it is the smallest π–system having as a subset.

The upward closure of in is the set

For any family , the finite intersection property is equivalent to any of the following:

  • The π–system generated by does not have the empty set as an element; that is,
  • The set has the finite intersection property.
  • The set is a (proper)[note 1] prefilter.
  • The family is a subset of some (proper) prefilter.[1]
  • The upward closure is a (proper) filter on . In this case, is called the filter on generated by , because it is the minimal (with respect to ) filter on that contains as a subset.
  • is a subset of some (proper)[note 1] filter.[1]

Applications

Compactness

The finite intersection property is useful in formulating an alternative definition of compactness:

Theorem — A space is compact if and only if every family of closed subsets having the finite intersection property has non-empty intersection.[5][6]

This formulation of compactness is used in some proofs of Tychonoff's theorem.

Uncountability of perfect spaces

Another common application is to prove that the real numbers are uncountable.

Theorem — Let be a non-empty compact Hausdorff space that satisfies the property that no one-point set is open. Then is uncountable.

All the conditions in the statement of the theorem are necessary:

  1. We cannot eliminate the Hausdorff condition; a countable set (with at least two points) with the indiscrete topology is compact, has more than one point, and satisfies the property that no one point sets are open, but is not uncountable.
  2. We cannot eliminate the compactness condition, as the set of rational numbers shows.
  3. We cannot eliminate the condition that one point sets cannot be open, as any finite space with the discrete topology shows.
Proof

We will show that if is non-empty and open, and if is a point of then there is a neighbourhood whose closure does not contain (' may or may not be in ). Choose different from (if then there must exist such a for otherwise would be an open one point set; if this is possible since is non-empty). Then by the Hausdorff condition, choose disjoint neighbourhoods and of and respectively. Then will be a neighbourhood of contained in whose closure doesn't contain as desired.

Now suppose is a bijection, and let denote the image of Let be the first open set and choose a neighbourhood whose closure does not contain Secondly, choose a neighbourhood whose closure does not contain Continue this process whereby choosing a neighbourhood whose closure does not contain Then the collection satisfies the finite intersection property and hence the intersection of their closures is non-empty by the compactness of Therefore, there is a point in this intersection. No can belong to this intersection because does not belong to the closure of This means that is not equal to for all and is not surjective; a contradiction. Therefore, is uncountable.

Corollary — Every closed interval with is uncountable. Therefore, is uncountable.

Corollary — Every perfect, locally compact Hausdorff space is uncountable.

Proof

Let be a perfect, compact, Hausdorff space, then the theorem immediately implies that is uncountable. If is a perfect, locally compact Hausdorff space that is not compact, then the one-point compactification of is a perfect, compact Hausdorff space. Therefore, the one point compactification of is uncountable. Since removing a point from an uncountable set still leaves an uncountable set, is uncountable as well.

Ultrafilters

Let be non-empty, having the finite intersection property. Then there exists an ultrafilter (in ) such that This result is known as the ultrafilter lemma.[7]

See also

  • Filter (set theory) – Family of sets representing "large" sets
  • Filters in topology – Use of filters to describe and characterize all basic topological notions and results.
  • Neighbourhood system – (for a point x) collection of all neighborhoods for the point x
  • Ultrafilter (set theory) – Maximal proper filter

References

Notes

  1. ^ a b A filter or prefilter on a set is proper or non-degenerate if it does not contain the empty set as an element. Like many − but not all − authors, this article will require non-degeneracy as part of the definitions of "prefilter" and "filter".

Citations

  1. ^ a b c d e Joshi 1983, pp. 242−248.
  2. ^ Dolecki & Mynard 2016, pp. 27–29, 33–35.
  3. ^ Bourbaki 1987, pp. 57–68.
  4. ^ Wilansky 2013, pp. 44–46.
  5. ^ Munkres 2000, p. 169.
  6. ^ A space is compact iff any family of closed sets having fip has non-empty intersection at PlanetMath.
  7. ^ Csirmaz, László; Hajnal, András (1994), Matematikai logika (In Hungarian), Budapest: Eötvös Loránd University.

General sources

Read other articles:

Bayraktar Kızılelma (Indonesia: Apel Merahcode: id is deprecated ) adalah pesawat tempur nirawak bermesin tunggal, memiliki kemampuan observasi rendah, berkemampuan kapal induk, dan bertenaga jet, yang saat ini sedang dikembangkan oleh perusahaan pertahanan Turki, Baykar. Bayraktar Kızılelma Bayraktar Kızılelma di Teknofest 2023 in Istanbul[1] Jenis Pesawat tempur nirawak siluman multiperan Negara asal  Turki Pembuat Baykar Penerbangan perdana 14 Desember 2022[2] ...

 

 

Jack BennyJack Benny pada 1964LahirBenjamin Kubelsky[1](1894-02-14)14 Februari 1894Chicago, Illinois, A.S.Meninggal26 Desember 1974(1974-12-26) (umur 80)Bel Air, Los Angeles, California, A.S.Sebab meninggalPancreatic cancerMakamHillside Memorial ParkCulver City, CaliforniaTempat tinggalBeverly Hills, CaliforniaPendidikanSekolah Tinggi WaukeganPekerjaanAktor, komedian, vaudevillian, pemain biolaTahun aktif1911–1974Dikenal atasThe Jack Benny ProgramKota asalWaukeg...

 

 

National personification of Serbia For other uses, see Serbia (disambiguation). Mother Serbia at the top of the building of the Government of Serbia Mother Serbia (Serbian: Мајка Србија / Majka Srbija; Србија мати / Srbija mati ), Serb Mother (Serbian: Српска мајка / Srpska majka) or Mother of All Serbs[1] (Serbian: Мајка свих Срба / Majka svih Srba), is a female national personification of Serbia, the nation-state of Serbs. The nation of S...

هل الكواكب التي تدعم الحياة, مثل الأرض, نادرة؟ في علم الفلك الكوكبي وعلم الأحياء الفلكي، تقول فرضية الأرض النادرة (بالإنجليزية: Rare Earth hypothesis)‏ بأن الحياة متعددة الخلايا والمعقدة (الحيوانات) التي ظهرت على الأرض تحتاج إلى دمج من الظروف الفيزيائية الفلكية والجيولوجية صعبة الح...

 

 

Shannon KookKook tahun 2016LahirShannon Xiao Lóng Kook-Chun09 Februari 1987 (umur 37)Johannesburg, Afrika SelatanNama lainShannon Kook-ChunWarga negara Afrika Selatan Kanada PekerjaanAktorTahun aktif2009–sekarang Shannon Kook (nama lahir Shannon Xiao Lóng Kook-Chun; lahir 9 Februari 1987) adalah aktor asal Afrika Selatan-Kanada. Ia di kenal karena perannya dalam serial televisi Degrassi: The Next Generation (2010–2011), Carmilla (2015–2016) dan The 100 (2018–2020), s...

 

 

Untuk kegunaan lain, lihat Flora (disambiguasi). Nabatah Flora, dari bahasa Latin, alam tumbuhan atau nabatah adalah khazanah segala macam jenis tanaman atau tumbuhan. Biasanya ditulis di depan nama geografis. Misalnya, nabatah Jawa, nabatah Asia atau nabatah Australia. Untuk hewan hal ini disebut fauna/alam hewan. Alam tumbuhan dan hewan berarti semua khazanah kehidupan tanpa mikrob. Flora, fauna dan bentuk-bentuk kehidupan yang lain semisal fungi, semuanya dikelompokkan sebagai biota. Pada ...

Tai Po Market railway station redirects here. For the station which closed in 1983, see Hong Kong Railway Museum. MTR station in the New Territories, Hong Kong This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tai Po Market station – news · newspapers · books · scholar · JSTOR (November 2014) (Learn how and wh...

 

 

Questa voce sugli argomenti imprenditori tedeschi e produttori cinematografici è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Foto della Library of Congress Paul Davidson (30 marzo 1867 – 18 luglio 1927) è stato un produttore cinematografico e imprenditore tedesco. Indice 1 Biografia 2 Filmografia 2.1 Produttore 3 Note 4 Altri progetti 5 Collegamenti esterni Biografia Prima di arrivare al cinema, Davidson lavorò nel settore dell'abbigliamento. Ne...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Galangan kapal Buenos Aires pada tahun 1915. Sejarah ekonomi Argentina merupakan salah satu yang paling dikaji oleh para ekonom akibat Paradoks Argentina: Argentina pernah menjadi negara yang tergolong maju pada awal abad ke-20, tetapi kemudian mengal...

Russian poet, translator and philologist (1703–1769) Vasily TrediakovskyВасилий ТредиаковскийPortrait by Fyodor RokotovBornVasily Kirillovich Trediakovsky(1703-03-05)5 March 1703Astrakhan, Tsardom of RussiaDied17 August 1769(1769-08-17) (aged 66)St. Petersburg, Russian EmpireOccupations Writer playwright philologist Vasily Kirillovich Trediakovsky (Russian: Василий Кириллович Тредиаковский; 5 March [O.S. 22 February]&#...

 

 

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (أكتوبر 2020) يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه الم...

 

 

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Engadget – news · newspapers · books · scholar · JSTOR (June 2023) (Learn how and when to remove this message) Technology blog website EngadgetType of siteBlogAvailable inEnglishEditorDana WollmanGeneral managerSarah PriestleyParent Weblogs, Inc. (2004–2011) AOL Inc. (2011–2017) Oath (2017–2019...

جزء من سلسلة مقالات سياسة الصومالالصومال الدستور الدستور حقوق الإنسان السلطة التنفيذية الرئيس حسن شيخ محمود مجلس الوزراء حمزة عبدي بري السلطة التشريعية البرلمان آدم محمد نور مدوبي السلطة القضائية القضاء الإنتخابات الإنتخابات الأخيرة في الصومال الانتخابات الرئاسية الص�...

 

 

Untuk orang lain dengan nama yang sama, lihat Suharyanto. Suharyanto Informasi pribadiLahir5 Desember 1963 (umur 60)Purwokerto, Jawa TengahAlma materAkademi Angkatan Laut (1988)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan LautMasa dinas1988—2022Pangkat Mayor Jenderal TNI (Mar)NRP9337/PSatuanKorps MarinirSunting kotak info • L • B Mayor Jenderal TNI (Mar) (Purn.) Dr. Suharyanto, S.E., M.M.[1] (lahir 5 Desember 1963) adalah seorang purnawirawan T...

 

 

Disambiguazione – Se stai cercando le autorità esistenti negli altri Stati, vedi Consiglio di Stato (disambigua). Consiglio di Stato della Repubblica Popolare Cinese 中华人民共和国国务院 Zhōnghuá Rénmín Gònghéguó GuówùyuànStemma della Repubblica Popolare Cinese Stato Cina TipoBranca esecutiva del Governo centrale della Repubblica Popolare Cinese; Corpo esecutivo dell'Assemblea nazionale del popolo; Organo più alto dell'amministrazione di Stato della Repubblica Po...

بلدة جنوا   الإحداثيات 42°33′32″N 83°49′49″W / 42.559°N 83.8303°W / 42.559; -83.8303   [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة ليفينغستون  خصائص جغرافية  المساحة 36.4 ميل مربع  ارتفاع 307 متر  عدد السكان  عدد السكان 20692 (1 أبريل 2020)&#...

 

 

School district serving Brockton, Massachusetts, US Brockton Public SchoolsLocation43 Crescent Street,Brockton, MA 02301 United StatesDistrict informationTypePublicGradesK-12SuperintendentDr. James Cobbs, Acting Superintendent; Dr. Joshua Patterson, Superintendent – Brockton School District #55F [1]Schools24Budget$252,609,245 total$14,209 per pupil(2016)[2]Students and staffStudents15,348 [3]Teachers1,025[4]Student–teacher ratio15.6 to 1[4]Other inf...

 

 

Football tournament qualifying stage Armenia vs Portugal match in Yerevan, 13 June 2015 The UEFA Euro 2016 qualifying Group I was one of the nine groups to decide which teams would qualify for the UEFA Euro 2016 finals tournament.[1] Group I consisted of five teams: Portugal, Denmark, Serbia, Armenia, and Albania,[2] where they played against each other home-and-away in a round-robin format.[3] The top two teams, Portugal and Albania, qualified directly for the finals....

Spanish noble and politician In this Spanish name, the first or paternal surname is de la Cerda and the second or maternal family name is Enríquez de Ribera. This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (February 2018) (Learn how and when to remove this message) Portrait of Juan Francisco de la Cerda Enríquez de ...

 

 

出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。 記事の信頼性向上にご協力をお願いいたします。(2019年5月) 三木龍喜Tatsuyoshi 'Ryuki' Miki 基本情報国籍 日本生年月日 (1904-02-11) 1904年2月11日没年月日 (1966-01-09) 1966年1月9日(61歳没)4大大会最高成績・シングルス全仏 3回戦 (1933)全英 3回戦 (1930—1933)全米 2回戦 (1927)4大大会最�...