Dual cone and polar cone

A set C and its dual cone C*.
A set C and its polar cone Co. The dual cone and the polar cone are symmetric to each other with respect to the origin.

Dual cone and polar cone are closely related concepts in convex analysis, a branch of mathematics.

Dual cone

In a vector space

The dual cone C* of a subset C in a linear space X over the reals, e.g. Euclidean space Rn, with dual space X* is the set

where is the duality pairing between X and X*, i.e. .

C* is always a convex cone, even if C is neither convex nor a cone.

In a topological vector space

If X is a topological vector space over the real or complex numbers, then the dual cone of a subset CX is the following set of continuous linear functionals on X:

,[1]

which is the polar of the set -C.[1] No matter what C is, will be a convex cone. If C ⊆ {0} then .

In a Hilbert space (internal dual cone)

Alternatively, many authors define the dual cone in the context of a real Hilbert space (such as Rn equipped with the Euclidean inner product) to be what is sometimes called the internal dual cone.

Properties

Using this latter definition for C*, we have that when C is a cone, the following properties hold:[2]

  • A non-zero vector y is in C* if and only if both of the following conditions hold:
  1. y is a normal at the origin of a hyperplane that supports C.
  2. y and C lie on the same side of that supporting hyperplane.
  • C* is closed and convex.
  • implies .
  • If C has nonempty interior, then C* is pointed, i.e. C* contains no line in its entirety.
  • If C is a cone and the closure of C is pointed, then C* has nonempty interior.
  • C** is the closure of the smallest convex cone containing C (a consequence of the hyperplane separation theorem)

Self-dual cones

A cone C in a vector space X is said to be self-dual if X can be equipped with an inner product ⟨⋅,⋅⟩ such that the internal dual cone relative to this inner product is equal to C.[3] Those authors who define the dual cone as the internal dual cone in a real Hilbert space usually say that a cone is self-dual if it is equal to its internal dual. This is slightly different from the above definition, which permits a change of inner product. For instance, the above definition makes a cone in Rn with ellipsoidal base self-dual, because the inner product can be changed to make the base spherical, and a cone with spherical base in Rn is equal to its internal dual.

The nonnegative orthant of Rn and the space of all positive semidefinite matrices are self-dual, as are the cones with ellipsoidal base (often called "spherical cones", "Lorentz cones", or sometimes "ice-cream cones"). So are all cones in R3 whose base is the convex hull of a regular polygon with an odd number of vertices. A less regular example is the cone in R3 whose base is the "house": the convex hull of a square and a point outside the square forming an equilateral triangle (of the appropriate height) with one of the sides of the square.

Polar cone

The polar of the closed convex cone C is the closed convex cone Co, and vice versa.

For a set C in X, the polar cone of C is the set[4]

It can be seen that the polar cone is equal to the negative of the dual cone, i.e. Co = −C*.

For a closed convex cone C in X, the polar cone is equivalent to the polar set for C.[5]

See also

References

  1. ^ a b Schaefer & Wolff 1999, pp. 215–222.
  2. ^ Boyd, Stephen P.; Vandenberghe, Lieven (2004). Convex Optimization (pdf). Cambridge University Press. pp. 51–53. ISBN 978-0-521-83378-3. Retrieved October 15, 2011.
  3. ^ Iochum, Bruno, "Cônes autopolaires et algèbres de Jordan", Springer, 1984.
  4. ^ Rockafellar, R. Tyrrell (1997) [1970]. Convex Analysis. Princeton, NJ: Princeton University Press. pp. 121–122. ISBN 978-0-691-01586-6.
  5. ^ Aliprantis, C.D.; Border, K.C. (2007). Infinite Dimensional Analysis: A Hitchhiker's Guide (3 ed.). Springer. p. 215. doi:10.1007/3-540-29587-9. ISBN 978-3-540-32696-0.

Bibliography

  • Boltyanski, V. G.; Martini, H.; Soltan, P. (1997). Excursions into combinatorial geometry. New York: Springer. ISBN 3-540-61341-2.
  • Goh, C. J.; Yang, X.Q. (2002). Duality in optimization and variational inequalities. London; New York: Taylor & Francis. ISBN 0-415-27479-6.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Ramm, A.G. (2000). Shivakumar, P.N.; Strauss, A.V. (eds.). Operator theory and its applications. Providence, R.I.: American Mathematical Society. ISBN 0-8218-1990-9.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.

Read other articles:

Neoscona orientalis Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Arachnida Ordo: Araneae Famili: Araneidae Spesies: Neoscona orientalis Nama binomial Neoscona orientalisUrquhart, 1887 Neoscona orientalis adalah spesies laba-laba yang tergolong famili Araneidae. Spesies ini juga merupakan bagian dari ordo Araneae. Nama ilmiah dari spesies ini pertama kali diterbitkan pada tahun 1887 oleh Urquhart. Laba-laba ini biasanya banyak ditemui di Selandia Baru. Referensi Platnick, No...

 

Sampul novel Chunhyangjeon yang diterbitkan pada awal abad ke-20. Chunhyangjeon atau Kisah Chunhyang (춘향전;春香傳) adalah sebuah novel klasik mengenai romansa percintaan sepasang kekasih di Korea pada masa Dinasti Joseon (1392-1910).[1][2] Sejarah Chunhyangjeon ditulis pada akhir periode Dinasti Joseon (abad ke-17 sampai ke-18).[1] Cerita novel ini didasarkan pada narasi pansori (opera tradisional) yang penulisnya tak diketahui, karena dipelajari dengan cara di...

 

هندية إيرانيةآريانيةالتوزيعالجغرافي:جنوب، وسط، وغرب آسياتصنيفات اللغوية:هندية أوروبيةهندية إيرانيةاللغة البدائية:هندية إيرانيةفروع: هندية آرية إيرانية نوريستانية أيزو 639-5:iirغلوتولوغ:indo1320[1]{{{اسم الخريطة}}}التوزيع الحالي لفروع الهندية الأوروبية في أوراسيا:   هن...

Denise Scott BrownDenise Scott Brown di ulang tahunnya yang ke-81LahirDenise Lakofski3 Oktober 1931 (umur 92)Nkana, Rhodesia UtaraKebangsaanAmerikaAlmamaterUniversity of the WitwatersrandArchitectural Association School of ArchitectureUniversity of PennsylvaniaPekerjaanArsitekSuami/istriRobert Scott Brown (m. 1955–59; kematiannya) Robert Venturi ​ ​(m. 1967)​Orang tuaSimon Lakofski Phyllis HepkerPraktikVenturi, Scott Brown and AssociatesVenturi and R...

 

Award by the Royal Society of London AwardFellowship of the Royal SocietyHeadquarters of the Royal Society in Carlton House Terrace in LondonAwarded forContributions to the improvement of natural knowledge[1]Sponsored byRoyal SocietyDate1663; 361 years ago (1663)LocationLondonCountryUnited KingdomTotal no. FellowsApproximately 8,000[2] (1,743 living Fellows) Fellowship of the Royal Society (FRS, ForMemRS and HonFRS) is an award granted by the Fellows of the R...

 

American member of the Dominican Order His Excellency, The Most ReverendJoseph Augustine Di NoiaOPAdjunct Secretary of the Congregation for the Doctrine of the FaithTitular Archbishop of Oregon CityAppointed21 September 2013Predecessornone (new position)Other post(s)Titular Archbishop of Oregon CityOrdersOrdination4 June 1970by James BurkeConsecration11 July 2009by William Levada, Donald Wuerl and Thomas C. KellyPersonal detailsBorn (1943-07-10) July 10, 1943 (age 80)Bronx, New...

Wakil Bupati BandungLambang Kabupaten BandungPetahanaSahrul Gunawansejak 26 April 2021Masa jabatan5 TahunDibentuk2000Pejabat pertamaElyadi AgraraharjaaSitus webbandungkab.go.id Berikut ini adalah daftar Wakil Bupati Bandung dari masa ke masa. No Wakil Bupati Mulai jabatan Akhir jabatan Prd. Ket. Bupati 1 Eliyadi Agraraharja 2000 2005 25 [1] Obar Sobarna 2 Yadi Srimulyadi 2005 2010 26 3 Deden Rukman Rumaji 12 Desember 2010 12 Desember 2015 27 [2] Dadang M. Nasser Tidak ada...

 

US Air Force unit This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (November 2012) (Learn how and when to remove this message) 31st Operations Group F-16C Fighting Falcon of the 510th Fighter Squadron[note 1]Active1940–1952; 1991–1994; 1994–presentCountry United StatesBranch United States Air ForceRoleFighterPart ofUnited States Air...

 

2006 studio album by AnjaniBlue AlertStudio album by AnjaniReleasedMay 19, 2006GenreJazzLength40:38LabelColumbiaProducerLeonard CohenAnjani chronology The Sacred Names(2003) Blue Alert(2006) I Came to Love(2014) Professional ratingsReview scoresSourceRatingAll About Jazz[1]AllMusic[2]Rolling Stone[3] Blue Alert is a jazz album recorded by Anjani, girlfriend and longtime backing singer of iconic Canadian singer-songwriter and poet Leonard Cohen, who also produce...

1845 novel by Benjamin Disraeli This article is about the novel by Benjamin Disraeli. For the non-fiction book about Shirley Ardell Mason's treatment for dissociative identity disorder, see Sybil (Schreiber book). Sybil; or, The Two Nations First edition title pageAuthorBenjamin DisraeliCountryUnited KingdomLanguageEnglishSeriesYoung England trilogyGenreFictionPublisherHenry ColburnPublication date1845 Sybil, or The Two Nations is an 1845 novel by Benjamin Disraeli. Published in the same year...

 

Formation of ripples in gravel and dirt roads This article is about the spontaneously-developed road texture. For the deliberately-formed roadway surface, see Rumble strip. For other uses, see Washboard (disambiguation). Not to be confused with Waterboarding. Washboarding effect on a road Washboarding or corrugation[1] is the formation of periodic, transverse ripples in the surface of gravel and dirt roads. Washboarding occurs in dry, granular road material[2] with repeated tr...

 

First director of the FBI, from 1908 to 1912 This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Stanley Finch – news · newspapers · books · scholar · JSTOR (June 2007) (Learn how and when to remove this message) Stanley FinchChief of the Bureau of InvestigationIn officeJuly 26, 1908 – April 30, 1912P...

Church of the Lutheran Brethren of AmericaClassificationProtestantOrientationLutheranTheologyConservative Christianity Pietistic LutheranismHeadquartersFergus Falls, MinnesotaOrigin1900 Milwaukee, WisconsinSeparated fromUnited Norwegian Lutheran Church of AmericaCongregations123 (2009)Members8,860 (2009)Official websitewww.clba.org The Church of the Lutheran Brethren of America (CLBA) is a Lutheran denomination of Christians rooted in a Pietist Lutheran spiritual awakening at the turn of the ...

 

Kimi Tsunagi Five MAlbum studio karya Asian Kung-Fu GenerationDirilis19 November 2003Direkam2003GenrePop punk, alternative rock, indie rockDurasi50:06LabelKi/oon RecordsKSCL-629Kronologi Asian Kung-Fu Generation Hōkai Amplifier(2002)Hōkai Amplifier2002 Kimi Tsunagi Five M(2003) Sol-fa(2004)Sol-fa2004 Singel dalam album Kimi Tsunagi Five M Mirai no KakeraDirilis: 6 Agustus 1996 Kimi to Iu HanaDirilis: 16 Oktober 1996 Kimi Tsunagi Five M (君繋ファイブエムcode: ja is deprecated , K...

 

رسم توضيحي من كاليفانبوغاتأساطير البلطيق هي مجموعة أساطير خاصة بشعب البلطيق نابعة من الوثنية البلطيقية واستمرت بعد التنصير والفلكلور البلطيقي. الأصول تنشأ جذور الأساطير البلطيقية من الأساطير الهندو أوروبية البدائية. كانت منطقة البلطيق واحدة من آخر المناطق في أوروبا الت...

Former unit of the British Army Royal Corsican RangersActive1798–18021803–1817Disbanded1817CountryCorsica (and Italy)AllegianceKingdom of Great Britain (to 1802)United Kingdom of Great Britain and IrelandBranchArmyTypeLight InfantrySizeBattalionDecorationsSphinxCommandersNotablecommandersHudson LoweMilitary unit Sir Hudson Lowe The Royal Corsican Rangers was a unit of the British Army, composed mainly of émigrés, which served during the later part of the French Revolutionary Wars and th...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 擬人化 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2021年2月) この項目では、修辞技法について説明しています。�...

 

「襟裳岬」のその他の用法については「襟裳岬 (曖昧さ回避)」をご覧ください。 襟裳岬 風の館 襟裳岬の位置北海道広域の地図を表示襟裳岬 (日本)日本の地図を表示場所 日本北海道幌泉郡えりも町座標 北緯41度55分28秒 東経143度14分57秒 / 北緯41.92444度 東経143.24917度 / 41.92444; 143.24917座標: 北緯41度55分28秒 東経143度14分57秒 / 北緯41.92444度 東経...

László RédeiBiographieNaissance 15 novembre 1900RákoskeresztúrDécès 21 novembre 1980 (à 80 ans)BudapestNationalité hongroiseFormation Université Loránd-Eötvös (jusqu'en 1921)Activités Mathématicien, professeur d'universitéAutres informationsA travaillé pour Académie hongroise des sciences (1967-1971)Université de Szeged (1940-1967)Membre de Académie hongroise des sciencesAcadémie LéopoldineDistinctions Prix Kossuth (1950)Prix Kossuth (1955)Liste détailléeGyula Kő...

 

Keuskupan Agung Militer SpanyolArzobispado Castrense de EspañaKatolik Lambang Keuskupan Agung Militer SpanyolLokasiNegaraSpanyolKantor pusatGedung Jose de VillarrealCalle del Nuncio №1328005 Wilayah Otonom Madrid[1]Koordinat40°24′48″N 3°42′34″W / 40.413299°N 3.709415°W / 40.413299; -3.709415StatistikLuas505.990 km2 (195.360 sq mi)InformasiDenominasiKatolik RomaGereja sui iurisGereja LatinRitusRitus LatinPendirian5 Agustus 1950 (74 ...