Digamma function

The digamma function ,
visualized using domain coloring
Plots of the digamma and the next three polygamma functions along the real line (they are real-valued on the real line)

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:[1][2][3]

It is the first of the polygamma functions. This function is strictly increasing and strictly concave on ,[4] and it asymptotically behaves as[5]

for complex numbers with large modulus () in the sector with some infinitesimally small positive constant .

The digamma function is often denoted as or Ϝ[6] (the uppercase form of the archaic Greek consonant digamma meaning double-gamma).

Relation to harmonic numbers

The gamma function obeys the equation

Taking the logarithm on both sides and using the functional equation property of the log-gamma function gives:

Differentiating both sides with respect to z gives:

Since the harmonic numbers are defined for positive integers n as

the digamma function is related to them by

where H0 = 0, and γ is the Euler–Mascheroni constant. For half-integer arguments the digamma function takes the values

Integral representations

If the real part of z is positive then the digamma function has the following integral representation due to Gauss:[7]

Combining this expression with an integral identity for the Euler–Mascheroni constant gives:

The integral is Euler's harmonic number , so the previous formula may also be written

A consequence is the following generalization of the recurrence relation:

An integral representation due to Dirichlet is:[7]

Gauss's integral representation can be manipulated to give the start of the asymptotic expansion of .[8]

This formula is also a consequence of Binet's first integral for the gamma function. The integral may be recognized as a Laplace transform.

Binet's second integral for the gamma function gives a different formula for which also gives the first few terms of the asymptotic expansion:[9]

From the definition of and the integral representation of the gamma function, one obtains

with .[10]

Infinite product representation

The function is an entire function,[11] and it can be represented by the infinite product

Here is the kth zero of (see below), and is the Euler–Mascheroni constant.

Note: This is also equal to due to the definition of the digamma function: .

Series representation

Series formula

Euler's product formula for the gamma function, combined with the functional equation and an identity for the Euler–Mascheroni constant, yields the following expression for the digamma function, valid in the complex plane outside the negative integers (Abramowitz and Stegun 6.3.16):[1]

Equivalently,

Evaluation of sums of rational functions

The above identity can be used to evaluate sums of the form

where p(n) and q(n) are polynomials of n.

Performing partial fraction on un in the complex field, in the case when all roots of q(n) are simple roots,

For the series to converge,

otherwise the series will be greater than the harmonic series and thus diverge. Hence

and

With the series expansion of higher rank polygamma function a generalized formula can be given as

provided the series on the left converges.

Taylor series

The digamma has a rational zeta series, given by the Taylor series at z = 1. This is

which converges for |z| < 1. Here, ζ(n) is the Riemann zeta function. This series is easily derived from the corresponding Taylor's series for the Hurwitz zeta function.

Newton series

The Newton series for the digamma, sometimes referred to as Stern series, derived by Moritz Abraham Stern in 1847,[12][13][14] reads

where (s
k
)
is the binomial coefficient. It may also be generalized to

where m = 2, 3, 4, ...[13]

Series with Gregory's coefficients, Cauchy numbers and Bernoulli polynomials of the second kind

There exist various series for the digamma containing rational coefficients only for the rational arguments. In particular, the series with Gregory's coefficients Gn is

where (v)n is the rising factorial (v)n = v(v+1)(v+2) ... (v+n-1), Gn(k) are the Gregory coefficients of higher order with Gn(1) = Gn, Γ is the gamma function and ζ is the Hurwitz zeta function.[15][13] Similar series with the Cauchy numbers of the second kind Cn reads[15][13]

A series with the Bernoulli polynomials of the second kind has the following form[13]

where ψn(a) are the Bernoulli polynomials of the second kind defined by the generating equation

It may be generalized to

where the polynomials Nn,r(a) are given by the following generating equation

so that Nn,1(a) = ψn(a).[13] Similar expressions with the logarithm of the gamma function involve these formulas[13]

and

where and .

Reflection formula

The digamma and polygamma functions satisfy reflection formulas similar to that of the gamma function:

.
.

Recurrence formula and characterization

The digamma function satisfies the recurrence relation

Thus, it can be said to "telescope" 1/x, for one has

where Δ is the forward difference operator. This satisfies the recurrence relation of a partial sum of the harmonic series, thus implying the formula

where γ is the Euler–Mascheroni constant.

Actually, ψ is the only solution of the functional equation

that is monotonic on R+ and satisfies F(1) = −γ. This fact follows immediately from the uniqueness of the Γ function given its recurrence equation and convexity restriction. This implies the useful difference equation:

Some finite sums involving the digamma function

There are numerous finite summation formulas for the digamma function. Basic summation formulas, such as

are due to Gauss.[16][17] More complicated formulas, such as

are due to works of certain modern authors (see e.g. Appendix B in Blagouchine (2014)[18]).

We also have [19]

Gauss's digamma theorem

For positive integers r and m (r < m), the digamma function may be expressed in terms of Euler's constant and a finite number of elementary functions[20]

which holds, because of its recurrence equation, for all rational arguments.

Multiplication theorem

The multiplication theorem of the -function is equivalent to[21]

Asymptotic expansion

The digamma function has the asymptotic expansion

where Bk is the kth Bernoulli number and ζ is the Riemann zeta function. The first few terms of this expansion are:

Although the infinite sum does not converge for any z, any finite partial sum becomes increasingly accurate as z increases.

The expansion can be found by applying the Euler–Maclaurin formula to the sum[22]

The expansion can also be derived from the integral representation coming from Binet's second integral formula for the gamma function. Expanding as a geometric series and substituting an integral representation of the Bernoulli numbers leads to the same asymptotic series as above. Furthermore, expanding only finitely many terms of the series gives a formula with an explicit error term:

Inequalities

When x > 0, the function

is completely monotonic and in particular positive. This is a consequence of Bernstein's theorem on monotone functions applied to the integral representation coming from Binet's first integral for the gamma function. Additionally, by the convexity inequality , the integrand in this representation is bounded above by . Consequently

is also completely monotonic. It follows that, for all x > 0,

This recovers a theorem of Horst Alzer.[23] Alzer also proved that, for s ∈ (0, 1),

Related bounds were obtained by Elezovic, Giordano, and Pecaric, who proved that, for x > 0 ,

where is the Euler–Mascheroni constant.[24] The constants ( and ) appearing in these bounds are the best possible.[25]

The mean value theorem implies the following analog of Gautschi's inequality: If x > c, where c ≈ 1.461 is the unique positive real root of the digamma function, and if s > 0, then

Moreover, equality holds if and only if s = 1.[26]

Inspired by the harmonic mean value inequality for the classical gamma function, Horzt Alzer and Graham Jameson proved, among other things, a harmonic mean-value inequality for the digamma function:

for

Equality holds if and only if .[27]

Computation and approximation

The asymptotic expansion gives an easy way to compute ψ(x) when the real part of x is large. To compute ψ(x) for small x, the recurrence relation

can be used to shift the value of x to a higher value. Beal[28] suggests using the above recurrence to shift x to a value greater than 6 and then applying the above expansion with terms above x14 cut off, which yields "more than enough precision" (at least 12 digits except near the zeroes).

As x goes to infinity, ψ(x) gets arbitrarily close to both ln(x1/2) and ln x. Going down from x + 1 to x, ψ decreases by 1/x, ln(x1/2) decreases by ln(x + 1/2) / (x1/2), which is more than 1/x, and ln x decreases by ln(1 + 1/x), which is less than 1/x. From this we see that for any positive x greater than 1/2,

or, for any positive x,

The exponential exp ψ(x) is approximately x1/2 for large x, but gets closer to x at small x, approaching 0 at x = 0.

For x < 1, we can calculate limits based on the fact that between 1 and 2, ψ(x) ∈ [−γ, 1 − γ], so

or

From the above asymptotic series for ψ, one can derive an asymptotic series for exp(−ψ(x)). The series matches the overall behaviour well, that is, it behaves asymptotically as it should for large arguments, and has a zero of unbounded multiplicity at the origin too.

This is similar to a Taylor expansion of exp(−ψ(1 / y)) at y = 0, but it does not converge.[29] (The function is not analytic at infinity.) A similar series exists for exp(ψ(x)) which starts with

If one calculates the asymptotic series for ψ(x+1/2) it turns out that there are no odd powers of x (there is no x−1 term). This leads to the following asymptotic expansion, which saves computing terms of even order.

Similar in spirit to the Lanczos approximation of the -function is Spouge's approximation.

Another alternative is to use the recurrence relation or the multiplication formula to shift the argument of into the range and to evaluate the Chebyshev series there.[30][31]

Special values

The digamma function has values in closed form for rational numbers, as a result of Gauss's digamma theorem. Some are listed below:

Moreover, by taking the logarithmic derivative of or where is real-valued, it can easily be deduced that

Apart from Gauss's digamma theorem, no such closed formula is known for the real part in general. We have, for example, at the imaginary unit the numerical approximation

Roots of the digamma function

The roots of the digamma function are the saddle points of the complex-valued gamma function. Thus they lie all on the real axis. The only one on the positive real axis is the unique minimum of the real-valued gamma function on R+ at x0 = 1.46163214496836234126.... All others occur single between the poles on the negative axis:

x1 = −0.50408300826445540925...
x2 = −1.57349847316239045877...
x3 = −2.61072086844414465000...
x4 = −3.63529336643690109783...

Already in 1881, Charles Hermite observed[32] that

holds asymptotically. A better approximation of the location of the roots is given by

and using a further term it becomes still better

which both spring off the reflection formula via

and substituting ψ(xn) by its not convergent asymptotic expansion. The correct second term of this expansion is 1/2n, where the given one works well to approximate roots with small n.

Another improvement of Hermite's formula can be given:[11]

Regarding the zeros, the following infinite sum identities were recently proved by István Mező and Michael Hoffman[11][33]

In general, the function

can be determined and it is studied in detail by the cited authors.

The following results[11]

also hold true.

Regularization

The digamma function appears in the regularization of divergent integrals

this integral can be approximated by a divergent general Harmonic series, but the following value can be attached to the series

See also

  • Polygamma function
  • Trigamma function
  • Chebyshev expansions of the digamma function in Wimp, Jet (1961). "Polynomial approximations to integral transforms". Math. Comp. 15 (74): 174–178. doi:10.1090/S0025-5718-61-99221-3.

References

  1. ^ a b Abramowitz, M.; Stegun, I. A., eds. (1972). "6.3 psi (Digamma) Function.". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (10th ed.). New York: Dover. pp. 258–259.
  2. ^ "NIST. Digital Library of Mathematical Functions (DLMF), Chapter 5".
  3. ^ Weisstein, Eric W. "Digamma function". MathWorld.
  4. ^ Alzer, Horst; Jameson, Graham (2017). "A harmonic mean inequality for the digamma function and related results" (PDF). Rendiconti del Seminario Matematico della Università di Padova. 137: 203–209. doi:10.4171/RSMUP/137-10.
  5. ^ "NIST. Digital Library of Mathematical Functions (DLMF), 5.11".
  6. ^ Pairman, Eleanor (1919). Tables of the Digamma and Trigamma Functions. Cambridge University Press. p. 5.
  7. ^ a b Whittaker and Watson, 12.3.
  8. ^ Whittaker and Watson, 12.31.
  9. ^ Whittaker and Watson, 12.32, example.
  10. ^ "NIST. Digital Library of Mathematical Functions (DLMF), 5.9".
  11. ^ a b c d Mező, István; Hoffman, Michael E. (2017). "Zeros of the digamma function and its Barnes G-function analogue". Integral Transforms and Special Functions. 28 (11): 846–858. doi:10.1080/10652469.2017.1376193. S2CID 126115156.
  12. ^ Nörlund, N. E. (1924). Vorlesungen über Differenzenrechnung. Berlin: Springer.
  13. ^ a b c d e f g Blagouchine, Ia. V. (2018). "Three Notes on Ser's and Hasse's Representations for the Zeta-functions" (PDF). INTEGERS: The Electronic Journal of Combinatorial Number Theory. 18A: 1–45. arXiv:1606.02044. Bibcode:2016arXiv160602044B.
  14. ^ "Leonhard Euler's Integral: An Historical Profile of the Gamma Function" (PDF). Archived (PDF) from the original on 2014-09-12. Retrieved 11 April 2022.
  15. ^ a b Blagouchine, Ia. V. (2016). "Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to π−1". Journal of Mathematical Analysis and Applications. 442: 404–434. arXiv:1408.3902. Bibcode:2014arXiv1408.3902B. doi:10.1016/J.JMAA.2016.04.032. S2CID 119661147.
  16. ^ R. Campbell. Les intégrales eulériennes et leurs applications, Dunod, Paris, 1966.
  17. ^ H.M. Srivastava and J. Choi. Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, the Netherlands, 2001.
  18. ^ Blagouchine, Iaroslav V. (2014). "A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations". Journal of Number Theory. 148: 537–592. arXiv:1401.3724. doi:10.1016/j.jnt.2014.08.009.
  19. ^ Classical topi s in complex function theorey. p. 46.
  20. ^ Choi, Junesang; Cvijovic, Djurdje (2007). "Values of the polygamma functions at rational arguments". Journal of Physics A. 40 (50): 15019. Bibcode:2007JPhA...4015019C. doi:10.1088/1751-8113/40/50/007. S2CID 118527596.
  21. ^ Gradshteyn, I. S.; Ryzhik, I. M. (2015). "8.365.5". Table of integrals, series and products. Elsevier Science. ISBN 978-0-12-384933-5. LCCN 2014010276.
  22. ^ Bernardo, José M. (1976). "Algorithm AS 103 psi(digamma function) computation" (PDF). Applied Statistics. 25: 315–317. doi:10.2307/2347257. JSTOR 2347257.
  23. ^ Alzer, Horst (1997). "On Some Inequalities for the Gamma and Psi Functions" (PDF). Mathematics of Computation. 66 (217): 373–389. doi:10.1090/S0025-5718-97-00807-7. JSTOR 2153660.
  24. ^ Elezović, Neven; Giordano, Carla; Pečarić, Josip (2000). "The best bounds in Gautschi's inequality". Mathematical Inequalities & Applications (2): 239–252. doi:10.7153/MIA-03-26.
  25. ^ Guo, Bai-Ni; Qi, Feng (2014). "Sharp inequalities for the psi function and harmonic numbers". Analysis. 34 (2). arXiv:0902.2524. doi:10.1515/anly-2014-0001. S2CID 16909853.
  26. ^ Laforgia, Andrea; Natalini, Pierpaolo (2013). "Exponential, gamma and polygamma functions: Simple proofs of classical and new inequalities". Journal of Mathematical Analysis and Applications. 407 (2): 495–504. doi:10.1016/j.jmaa.2013.05.045.
  27. ^ Alzer, Horst; Jameson, Graham (2017). "A harmonic mean inequality for the digamma function and related results" (PDF). Rendiconti del Seminario Matematico della Università di Padova. 70 (201): 203–209. doi:10.4171/RSMUP/137-10. ISSN 0041-8994. LCCN 50046633. OCLC 01761704. S2CID 41966777.
  28. ^ Beal, Matthew J. (2003). Variational Algorithms for Approximate Bayesian Inference (PDF) (PhD thesis). The Gatsby Computational Neuroscience Unit, University College London. pp. 265–266.
  29. ^ If it converged to a function f(y) then ln(f(y) / y) would have the same Maclaurin series as ln(1 / y) − φ(1 / y). But this does not converge because the series given earlier for φ(x) does not converge.
  30. ^ Wimp, Jet (1961). "Polynomial approximations to integral transforms". Math. Comp. 15 (74): 174–178. doi:10.1090/S0025-5718-61-99221-3. JSTOR 2004225.
  31. ^ Mathar, R. J. (2004). "Chebyshev series expansion of inverse polynomials". Journal of Computational and Applied Mathematics. 196 (2): 596–607. arXiv:math/0403344. doi:10.1016/j.cam.2005.10.013. App. E
  32. ^ Hermite, Charles (1881). "Sur l'intégrale Eulérienne de seconde espéce". Journal für die reine und angewandte Mathematik (90): 332–338. doi:10.1515/crll.1881.90.332. S2CID 118866486.
  33. ^ Mező, István (2014). "A note on the zeros and local extrema of Digamma related functions". arXiv:1409.2971 [math.CV].
OEISA047787 psi(1/3), OEISA200064 psi(2/3), OEISA020777 psi(1/4), OEISA200134 psi(3/4), OEISA200135 to OEISA200138 psi(1/5) to psi(4/5).

Read other articles:

Provinsi Seberang Laut GuineaProvíncia Portuguesa de Guiné1588–1974 Bendera Lambang Lagu kebangsaan: Hymno Patriótico (1808–26)Lagu PatriotikHino da Carta (1826–1911)Himne PiagamA Portuguesa (1911–74)PortugisStatus Jajahan Tanjung Verde Portugis (1588–1879) Koloni Kekaisaran Portugis (1879–1951) Provinsi Seberang Laut Portugis (1951–1973) Negara Bagian Kekaisaran Portugis (1973–1974) Ibu kotaBolama (1852–1942)Bissau (1942–1974)Bahasa yang umum digunakanPortugi...

 

 

Nemanja Pejčinović Informasi pribadiNama lengkap Nemanja PejčinovićTanggal lahir 4 November 1987 (umur 36)Tempat lahir Kragujevac, SFR YugoslaviaTinggi 1,85 m (6 ft 1 in)[1]Posisi bermain BekInformasi klubKlub saat ini OGC NiceNomor 4Karier junior0000–2005 RadKarier senior*Tahun Tim Tampil (Gol)2005–2007 Rad 20 (0)2007 OFK Beograd 16 (1)2008–2010 Rad 32 (1)2009 → Red Star Belgrade (pinjaman) 14 (0)2009–2010 → Hertha BSC (pinjaman) 16 (0)2010– Nic...

 

 

В Википедии есть статьи о других людях с фамилией Семёнов-Тян-Шанский.В Википедии есть статьи о других людях с похожими именами, см. Семёнов и Семёнов, Вениамин. Вениамин Петрович Семёнов-Тян-Шанский Дата рождения 27 марта (8 апреля) 1870(1870-04-08) Место рождения Санкт-Петербург, ...

Запрос «B&B» перенаправляется сюда; о типе гостиницы см. Bed and breakfast. Дерзкие и красивыеангл. The Bold and the Beautiful Жанр мыльная опера Создатели Уильям БеллЛи Филлип Белл Режиссёры Майкл Стич[d]Deveney Kelly[d]Cynthia J. Popp[d]Дэвид Шонесси[d] В главных ролях Джон МакКукСьюзан ФлэннериДжим...

 

 

A bee hotel in GermanyArtificial bee shelter Bee hotels are a type of insect hotel for solitary pollinator bees, or wasps, providing them rest and shelter.[1] Typically, these bees would nest in hollow plant stems, holes in dead wood, or other natural cavities; a bee hotel attempts to mimic this structure by using a bunch of hollow reeds or holes drilled in wood, among other methods.[1] Bee hotels can possibly support native bee and wasp populations by adding nesting resources...

 

 

Questa voce o sezione sull'argomento seconda guerra mondiale è ritenuta da controllare. Motivo: non basta eliminare i riferimenti alle fonti controverse: vanno eliminati anche i contenuti a esse facenti capo e in contrasto con la storiografia consolidata (vale per tutta la voce, visto che tali contenuti sono distribuiti su più sezioni e non solo su quella ulteriormente evidenziata). Partecipa alla discussione e/o correggi la voce. Segui i suggerimenti del progetto di riferimento. Ecci...

Questa voce o sezione sull'argomento televisione non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Questa voce sull'argomento televisione è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. La Struttura Grandi Eventi dell...

 

 

Cet article est une ébauche concernant une chronologie ou une date et la Nouvelle-Écosse. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Chronologie de la Nouvelle-Écosse ◄◄ 1897 1898 1899 1900 1901 1902 1903 1904 1905 ►► Chronologies Données clés 1898 1899 1900  1901  1902 1903 1904Décennies :1870 1880 1890  1900  1910 1920 1930Siècles :XVIIIe XIXe  XXe  X...

 

 

Storage virtualisation appliance This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (June 2020) This article relies excessively on references to primary sources. Please improve this article by adding...

2010 Total Nonstop Action Wrestling pay-per-view event Hardcore Justice (2010)Promotional poster featuring ECW alumni from left to right: Rhino, Tommy Dreamer, Mick Foley, Stevie Richards and RavenPromotionTotal Nonstop Action WrestlingDateAugust 8, 2010CityOrlando, FloridaVenueImpact ZoneAttendance1,100[1]Tagline(s)The Last Stand[2]Pay-per-view chronology ← PreviousVictory Road Next →No Surrender Hardcore Justice chronology ← Previous2009 Next →201...

 

 

Cantone di BourgognecantoneCanton de Bourgogne LocalizzazioneStato Francia RegioneGrand Est Dipartimento Marna ArrondissementReims AmministrazioneCapoluogoBourgogne TerritorioCoordinatedel capoluogo49°21′N 4°04′E / 49.35°N 4.066667°E49.35; 4.066667 (Cantone di Bourgogne)Coordinate: 49°21′N 4°04′E / 49.35°N 4.066667°E49.35; 4.066667 (Cantone di Bourgogne) Superficie364,44 km² Abitanti27 038 (2012) Densità74,19 ab./km² C...

 

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

American TV series or program The Ambiguously Gay DuoThe Ambiguously Gay Duo title cardGenreAnimationCreated byRobert SmigelJ. J. SedelmaierVoices ofStephen ColbertSteve CarellRobert SmigelNarrated byBill ChottCountry of originUnited StatesOriginal languageEnglishNo. of episodes12ProductionProducersRobert SmigelJ.J. SedelmaierTanya RynoSamantha ScharffRunning time3 minutesProduction companiesJ.J. Sedelmaier Productions, Inc.Original releaseNetworkABC (1996)NBC (1996–2011) The Ambiguously G...

 

 

2020年夏季奥林匹克运动会马来西亚代表團马来西亚国旗IOC編碼MASNOC马来西亚奥林匹克理事会網站olympic.org.my(英文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員30參賽項目10个大项旗手开幕式:李梓嘉和吳柳螢(羽毛球)[1][2]閉幕式:潘德莉拉(跳水)[3]獎牌榜排名第74 金牌 銀牌 銅�...

 

 

أتلتيكو مدريد الاسم الكامل نادي مدريد الرياضي (Club Atlético de Madrid) اللقب صانعو الوسائد (بالإسبانية: Colchoneros)‏ الروخي بلانكوس (بالإسبانية: Rojiblancos)‏ الهنود (بالإسبانية: Los Indios)‏ الاسم المختصر ATM تأسس عام 1903 (منذ 121 سنة) الملعب ملعب ميتروبوليتانو مدريد، إسبانيا(السعة: 67,703[1]) البلد ...

12th episode of the 9th season of South Park Trapped in the ClosetSouth Park episodeXenu as depicted in South Park, with a line onscreen mocking ScientologyEpisode no.Season 9Episode 12Directed byTrey Parker (credited as John Smith)Written byTrey Parker (credited as John Smith)Production code912Original air dateNovember 16, 2005 (2005-11-16)Episode chronology ← PreviousGinger Kids Next →Free Willzyx South Park season 9List of episodes Trapped in the Closet i...

 

 

Belahan bumi utara dari Flamsteed Atlas Coelestis Penunjukan Flamsteed adalah kombinasi angka dan nama konstelasi yang secara unik mengidentifikasi sebagian besar mata telanjang bintang di konstelasi modern yang terlihat dari selatan Inggris. Mereka diberi nama untuk John Flamsteed yang pertama kali menggunakannya saat menyusun Historia Coelestis Britannica miliknya. (Flamsteed menggunakan teleskop,[1] dan katalognya juga mencakup beberapa bintang yang relatif terang tetapi belum tent...

 

 

У этого топонима есть и другие значения, см. Акатлан. ГородАкатланAcatlán Герб 20°09′ с. ш. 98°26′ з. д.HGЯO Страна  Мексика Штат Идальго Муниципалитет Акатлан Внутреннее деление 53 поселений История и география Основан 1518 Площадь 241,6 км² Высота центра 2118,57 м Часо...

ゲオルク・オーム オームの法則(オームのほうそく、英語: Ohm's law)とは、導電現象において、電気回路の部分に流れる電流とその両端の電位差の関係を主張する法則である。クーロンの法則とともに電気工学で最も重要な関係式の一つである。 1781年にヘンリー・キャヴェンディッシュが発見したが、その業績は死後数十年した後に1879年にその遺稿を纏めたマクス�...

 

 

For the Westworld episode, see Well Enough Alone (Westworld). 2007 single by ChevelleWell Enough AloneSingle by Chevellefrom the album Vena Sera ReleasedMarch 6, 2007RecordedThe Palms Studio, Las Vegas, 2004Length4:18LabelEpicSongwriter(s) Pete Loeffler Sam Loeffler Producer(s)Michael Elvis BasketteChevelle singles chronology Panic Prone (2005) Well Enough Alone (2007) I Get It (2007) Well Enough Alone is a song by American rock band Chevelle. It is the first single from the album Vena Sera a...