Note: This is also equal to due to the definition of the digamma function: .
Series representation
Series formula
Euler's product formula for the gamma function, combined with the functional equation and an identity for the Euler–Mascheroni constant, yields the following expression for the digamma function, valid in the complex plane outside the negative integers (Abramowitz and Stegun 6.3.16):[1]
Equivalently,
Evaluation of sums of rational functions
The above identity can be used to evaluate sums of the form
where p(n) and q(n) are polynomials of n.
Performing partial fraction on un in the complex field, in the case when all roots of q(n) are simple roots,
For the series to converge,
otherwise the series will be greater than the harmonic series and thus diverge. Hence
and
With the series expansion of higher rank polygamma function a generalized formula can be given as
which converges for |z| < 1. Here, ζ(n) is the Riemann zeta function. This series is easily derived from the corresponding Taylor's series for the Hurwitz zeta function.
Series with Gregory's coefficients, Cauchy numbers and Bernoulli polynomials of the second kind
There exist various series for the digamma containing rational coefficients only for the rational arguments. In particular, the series with Gregory's coefficientsGn is
Actually, ψ is the only solution of the functional equation
that is monotonic on R+ and satisfies F(1) = −γ. This fact follows immediately from the uniqueness of the Γ function given its recurrence equation and convexity restriction. This implies the useful difference equation:
Some finite sums involving the digamma function
There are numerous finite summation formulas for the digamma function. Basic summation formulas, such as
are due to Gauss.[16][17] More complicated formulas, such as
are due to works of certain modern authors (see e.g. Appendix B in Blagouchine (2014)[18]).
The expansion can also be derived from the integral representation coming from Binet's second integral formula for the gamma function. Expanding as a geometric series and substituting an integral representation of the Bernoulli numbers leads to the same asymptotic series as above. Furthermore, expanding only finitely many terms of the series gives a formula with an explicit error term:
Inequalities
When x > 0, the function
is completely monotonic and in particular positive. This is a consequence of Bernstein's theorem on monotone functions applied to the integral representation coming from Binet's first integral for the gamma function. Additionally, by the convexity inequality , the integrand in this representation is bounded above by . Consequently
is also completely monotonic. It follows that, for all x > 0,
This recovers a theorem of Horst Alzer.[23] Alzer also proved that, for s ∈ (0, 1),
Related bounds were obtained by Elezovic, Giordano, and Pecaric, who proved that, for x > 0 ,
The mean value theorem implies the following analog of Gautschi's inequality: If x > c, where c ≈ 1.461 is the unique positive real root of the digamma function, and if s > 0, then
Moreover, equality holds if and only if s = 1.[26]
Inspired by the harmonic mean value inequality for the classical gamma function, Horzt Alzer and Graham Jameson proved, among other things, a harmonic mean-value inequality for the digamma function:
The asymptotic expansion gives an easy way to compute ψ(x) when the real part of x is large. To compute ψ(x) for small x, the recurrence relation
can be used to shift the value of x to a higher value. Beal[28] suggests using the above recurrence to shift x to a value greater than 6 and then applying the above expansion with terms above x14 cut off, which yields "more than enough precision" (at least 12 digits except near the zeroes).
As x goes to infinity, ψ(x) gets arbitrarily close to both ln(x − 1/2) and ln x. Going down from x + 1 to x, ψ decreases by 1/x, ln(x − 1/2) decreases by ln(x + 1/2) / (x − 1/2), which is more than 1/x, and ln x decreases by ln(1 + 1/x), which is less than 1/x. From this we see that for any positive x greater than 1/2,
or, for any positive x,
The exponential exp ψ(x) is approximately x − 1/2 for large x, but gets closer to x at small x, approaching 0 at x = 0.
For x < 1, we can calculate limits based on the fact that between 1 and 2, ψ(x) ∈ [−γ, 1 − γ], so
or
From the above asymptotic series for ψ, one can derive an asymptotic series for exp(−ψ(x)). The series matches the overall behaviour well, that is, it behaves asymptotically as it should for large arguments, and has a zero of unbounded multiplicity at the origin too.
This is similar to a Taylor expansion of exp(−ψ(1 / y)) at y = 0, but it does not converge.[29] (The function is not analytic at infinity.) A similar series exists for exp(ψ(x)) which starts with
If one calculates the asymptotic series for ψ(x+1/2) it turns out that there are no odd powers of x (there is no x−1 term). This leads to the following asymptotic expansion, which saves computing terms of even order.
Another alternative is to use the recurrence relation or the multiplication formula to shift the argument of into the range and to evaluate the Chebyshev series there.[30][31]
Special values
The digamma function has values in closed form for rational numbers, as a result of Gauss's digamma theorem. Some are listed below:
Moreover, by taking the logarithmic derivative of or where is real-valued, it can easily be deduced that
Apart from Gauss's digamma theorem, no such closed formula is known for the real part in general. We have, for example, at the imaginary unit the numerical approximation
Roots of the digamma function
The roots of the digamma function are the saddle points of the complex-valued gamma function. Thus they lie all on the real axis. The only one on the positive real axis is the unique minimum of the real-valued gamma function on R+ at x0 = 1.46163214496836234126.... All others occur single between the poles on the negative axis:
holds asymptotically. A better approximation of the location of the roots is given by
and using a further term it becomes still better
which both spring off the reflection formula via
and substituting ψ(xn) by its not convergent asymptotic expansion. The correct second term of this expansion is 1/2n, where the given one works well to approximate roots with small n.
Another improvement of Hermite's formula can be given:[11]
Regarding the zeros, the following infinite sum identities were recently proved by István Mező and Michael Hoffman[11][33]
In general, the function
can be determined and it is studied in detail by the cited authors.
^ ab
Abramowitz, M.; Stegun, I. A., eds. (1972). "6.3 psi (Digamma) Function.". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (10th ed.). New York: Dover. pp. 258–259.
^ abcdMező, István; Hoffman, Michael E. (2017). "Zeros of the digamma function and its Barnes G-function analogue". Integral Transforms and Special Functions. 28 (11): 846–858. doi:10.1080/10652469.2017.1376193. S2CID126115156.
^Nörlund, N. E. (1924). Vorlesungen über Differenzenrechnung. Berlin: Springer.
^ abBlagouchine, Ia. V. (2016). "Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to π−1". Journal of Mathematical Analysis and Applications. 442: 404–434. arXiv:1408.3902. Bibcode:2014arXiv1408.3902B. doi:10.1016/J.JMAA.2016.04.032. S2CID119661147.
^R. Campbell. Les intégrales eulériennes et leurs applications, Dunod, Paris, 1966.
^H.M. Srivastava and J. Choi. Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, the Netherlands, 2001.
^Blagouchine, Iaroslav V. (2014). "A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations". Journal of Number Theory. 148: 537–592. arXiv:1401.3724. doi:10.1016/j.jnt.2014.08.009.
^Classical topi s in complex function theorey. p. 46.
^If it converged to a function f(y) then ln(f(y) / y) would have the same Maclaurin series as ln(1 / y) − φ(1 / y). But this does not converge because the series given earlier for φ(x) does not converge.
^Mathar, R. J. (2004). "Chebyshev series expansion of inverse polynomials". Journal of Computational and Applied Mathematics. 196 (2): 596–607. arXiv:math/0403344. doi:10.1016/j.cam.2005.10.013. App. E
^Hermite, Charles (1881). "Sur l'intégrale Eulérienne de seconde espéce". Journal für die reine und angewandte Mathematik (90): 332–338. doi:10.1515/crll.1881.90.332. S2CID118866486.
^
Mező, István (2014). "A note on the zeros and local extrema of Digamma related functions". arXiv:1409.2971 [math.CV].
Provinsi Seberang Laut GuineaProvíncia Portuguesa de Guiné1588–1974 Bendera Lambang Lagu kebangsaan: Hymno Patriótico (1808–26)Lagu PatriotikHino da Carta (1826–1911)Himne PiagamA Portuguesa (1911–74)PortugisStatus Jajahan Tanjung Verde Portugis (1588–1879) Koloni Kekaisaran Portugis (1879–1951) Provinsi Seberang Laut Portugis (1951–1973) Negara Bagian Kekaisaran Portugis (1973–1974) Ibu kotaBolama (1852–1942)Bissau (1942–1974)Bahasa yang umum digunakanPortugi...
Nemanja Pejčinović Informasi pribadiNama lengkap Nemanja PejčinovićTanggal lahir 4 November 1987 (umur 36)Tempat lahir Kragujevac, SFR YugoslaviaTinggi 1,85 m (6 ft 1 in)[1]Posisi bermain BekInformasi klubKlub saat ini OGC NiceNomor 4Karier junior0000–2005 RadKarier senior*Tahun Tim Tampil (Gol)2005–2007 Rad 20 (0)2007 OFK Beograd 16 (1)2008–2010 Rad 32 (1)2009 → Red Star Belgrade (pinjaman) 14 (0)2009–2010 → Hertha BSC (pinjaman) 16 (0)2010– Nic...
В Википедии есть статьи о других людях с фамилией Семёнов-Тян-Шанский.В Википедии есть статьи о других людях с похожими именами, см. Семёнов и Семёнов, Вениамин. Вениамин Петрович Семёнов-Тян-Шанский Дата рождения 27 марта (8 апреля) 1870(1870-04-08) Место рождения Санкт-Петербург, ...
Запрос «B&B» перенаправляется сюда; о типе гостиницы см. Bed and breakfast. Дерзкие и красивыеангл. The Bold and the Beautiful Жанр мыльная опера Создатели Уильям БеллЛи Филлип Белл Режиссёры Майкл Стич[d]Deveney Kelly[d]Cynthia J. Popp[d]Дэвид Шонесси[d] В главных ролях Джон МакКукСьюзан ФлэннериДжим...
A bee hotel in GermanyArtificial bee shelter Bee hotels are a type of insect hotel for solitary pollinator bees, or wasps, providing them rest and shelter.[1] Typically, these bees would nest in hollow plant stems, holes in dead wood, or other natural cavities; a bee hotel attempts to mimic this structure by using a bunch of hollow reeds or holes drilled in wood, among other methods.[1] Bee hotels can possibly support native bee and wasp populations by adding nesting resources...
Questa voce o sezione sull'argomento seconda guerra mondiale è ritenuta da controllare. Motivo: non basta eliminare i riferimenti alle fonti controverse: vanno eliminati anche i contenuti a esse facenti capo e in contrasto con la storiografia consolidata (vale per tutta la voce, visto che tali contenuti sono distribuiti su più sezioni e non solo su quella ulteriormente evidenziata). Partecipa alla discussione e/o correggi la voce. Segui i suggerimenti del progetto di riferimento. Ecci...
Questa voce o sezione sull'argomento televisione non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Questa voce sull'argomento televisione è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. La Struttura Grandi Eventi dell...
Cet article est une ébauche concernant une chronologie ou une date et la Nouvelle-Écosse. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Chronologie de la Nouvelle-Écosse ◄◄ 1897 1898 1899 1900 1901 1902 1903 1904 1905 ►► Chronologies Données clés 1898 1899 1900 1901 1902 1903 1904Décennies :1870 1880 1890 1900 1910 1920 1930Siècles :XVIIIe XIXe XXe X...
Storage virtualisation appliance This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (June 2020) This article relies excessively on references to primary sources. Please improve this article by adding...
2010 Total Nonstop Action Wrestling pay-per-view event Hardcore Justice (2010)Promotional poster featuring ECW alumni from left to right: Rhino, Tommy Dreamer, Mick Foley, Stevie Richards and RavenPromotionTotal Nonstop Action WrestlingDateAugust 8, 2010CityOrlando, FloridaVenueImpact ZoneAttendance1,100[1]Tagline(s)The Last Stand[2]Pay-per-view chronology ← PreviousVictory Road Next →No Surrender Hardcore Justice chronology ← Previous2009 Next →201...
Cantone di BourgognecantoneCanton de Bourgogne LocalizzazioneStato Francia RegioneGrand Est Dipartimento Marna ArrondissementReims AmministrazioneCapoluogoBourgogne TerritorioCoordinatedel capoluogo49°21′N 4°04′E / 49.35°N 4.066667°E49.35; 4.066667 (Cantone di Bourgogne)Coordinate: 49°21′N 4°04′E / 49.35°N 4.066667°E49.35; 4.066667 (Cantone di Bourgogne) Superficie364,44 km² Abitanti27 038 (2012) Densità74,19 ab./km² C...
American TV series or program The Ambiguously Gay DuoThe Ambiguously Gay Duo title cardGenreAnimationCreated byRobert SmigelJ. J. SedelmaierVoices ofStephen ColbertSteve CarellRobert SmigelNarrated byBill ChottCountry of originUnited StatesOriginal languageEnglishNo. of episodes12ProductionProducersRobert SmigelJ.J. SedelmaierTanya RynoSamantha ScharffRunning time3 minutesProduction companiesJ.J. Sedelmaier Productions, Inc.Original releaseNetworkABC (1996)NBC (1996–2011) The Ambiguously G...
أتلتيكو مدريد الاسم الكامل نادي مدريد الرياضي (Club Atlético de Madrid) اللقب صانعو الوسائد (بالإسبانية: Colchoneros) الروخي بلانكوس (بالإسبانية: Rojiblancos) الهنود (بالإسبانية: Los Indios) الاسم المختصر ATM تأسس عام 1903 (منذ 121 سنة) الملعب ملعب ميتروبوليتانو مدريد، إسبانيا(السعة: 67,703[1]) البلد ...
12th episode of the 9th season of South Park Trapped in the ClosetSouth Park episodeXenu as depicted in South Park, with a line onscreen mocking ScientologyEpisode no.Season 9Episode 12Directed byTrey Parker (credited as John Smith)Written byTrey Parker (credited as John Smith)Production code912Original air dateNovember 16, 2005 (2005-11-16)Episode chronology ← PreviousGinger Kids Next →Free Willzyx South Park season 9List of episodes Trapped in the Closet i...
Belahan bumi utara dari Flamsteed Atlas Coelestis Penunjukan Flamsteed adalah kombinasi angka dan nama konstelasi yang secara unik mengidentifikasi sebagian besar mata telanjang bintang di konstelasi modern yang terlihat dari selatan Inggris. Mereka diberi nama untuk John Flamsteed yang pertama kali menggunakannya saat menyusun Historia Coelestis Britannica miliknya. (Flamsteed menggunakan teleskop,[1] dan katalognya juga mencakup beberapa bintang yang relatif terang tetapi belum tent...
У этого топонима есть и другие значения, см. Акатлан. ГородАкатланAcatlán Герб 20°09′ с. ш. 98°26′ з. д.HGЯO Страна Мексика Штат Идальго Муниципалитет Акатлан Внутреннее деление 53 поселений История и география Основан 1518 Площадь 241,6 км² Высота центра 2118,57 м Часо...
For the Westworld episode, see Well Enough Alone (Westworld). 2007 single by ChevelleWell Enough AloneSingle by Chevellefrom the album Vena Sera ReleasedMarch 6, 2007RecordedThe Palms Studio, Las Vegas, 2004Length4:18LabelEpicSongwriter(s) Pete Loeffler Sam Loeffler Producer(s)Michael Elvis BasketteChevelle singles chronology Panic Prone (2005) Well Enough Alone (2007) I Get It (2007) Well Enough Alone is a song by American rock band Chevelle. It is the first single from the album Vena Sera a...