Bézout matrix

In mathematics, a Bézout matrix (or Bézoutian or Bezoutiant) is a special square matrix associated with two polynomials, introduced by James Joseph Sylvester in 1853 and Arthur Cayley in 1857 and named after Étienne Bézout.[1][2] Bézoutian may also refer to the determinant of this matrix, which is equal to the resultant of the two polynomials. Bézout matrices are sometimes used to test the stability of a given polynomial.

Definition

Let and be two complex polynomials of degree at most n,

(Note that any coefficient or could be zero.) The Bézout matrix of order n associated with the polynomials f and g is

where the entries result from the identity

It is an n × n complex matrix, and its entries are such that if we let and for each , then:

To each Bézout matrix, one can associate the following bilinear form, called the Bézoutian:

Examples

  • For n = 3, we have for any polynomials f and g of degree (at most) 3:
  • Let and be the two polynomials. Then:

The last row and column are all zero as f and g have degree strictly less than n (which is 4). The other zero entries are because for each , either or is zero.

Properties

  • is symmetric (as a matrix);
  • ;
  • ;
  • is a bilinear function;
  • is a real matrix if f and g have real coefficients;
  • is nonsingular with if and only if f and g have no common roots.
  • with has determinant which is the resultant of f and g.

Applications

An important application of Bézout matrices can be found in control theory. To see this, let f(z) be a complex polynomial of degree n and denote by q and p the real polynomials such that f(iy) = q(y) + ip(y) (where y is real). We also denote r for the rank and σ for the signature of . Then, we have the following statements:

  • f(z) has n − r roots in common with its conjugate;
  • the left r roots of f(z) are located in such a way that:
    • (r + σ)/2 of them lie in the open left half-plane, and
    • (r − σ)/2 lie in the open right half-plane;
  • f is Hurwitz stable if and only if is positive definite.

The third statement gives a necessary and sufficient condition concerning stability. Besides, the first statement exhibits some similarities with a result concerning Sylvester matrices while the second one can be related to Routh–Hurwitz theorem.

Citations

References

  • Cayley, Arthur (1857), "Note sur la methode d'elimination de Bezout", J. Reine Angew. Math., 53: 366–367, doi:10.1515/crll.1857.53.366
  • Kreĭn, M. G.; Naĭmark, M. A. (1981) [1936], "The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations", Linear and Multilinear Algebra, 10 (4): 265–308, doi:10.1080/03081088108817420, ISSN 0308-1087, MR 0638124
  • Pan, Victor; Bini, Dario (1994). Polynomial and matrix computations. Basel, Switzerland: Birkhäuser. ISBN 0-8176-3786-9.
  • Pritchard, Anthony J.; Hinrichsen, Diederich (2005). Mathematical systems theory I: modelling, state space analysis, stability and robustness. Berlin: Springer. ISBN 3-540-44125-5.
  • Sylvester, James Joseph (1853), "On a Theory of the Syzygetic Relations of Two Rational Integral Functions, Comprising an Application to the Theory of Sturm's Functions, and That of the Greatest Algebraical Common Measure", Philosophical Transactions of the Royal Society of London, 143, The Royal Society: 407–548, doi:10.1098/rstl.1853.0018, ISSN 0080-4614, JSTOR 108572

Read other articles:

British multinational infrastructure group based in the United Kingdom Balfour Beatty plcFormerlyBICC Public Limited Company (1945–2000)[1]Company typePublic limited companyTraded asLSE: BBYFTSE 250 componentISINGB0000961622 IndustryInfrastructure professional servicesConstruction servicesSupport servicesInfrastructure investmentsFounded1909FoundersGeorge BalfourAndrew BeattyHeadquartersLondon, EnglandKey peopleLord Allen (Chairman)Leo Quinn (CEO)Revenue £9,595 milli...

 

 

Pour les articles homonymes, voir Bourseiller et Sara. Marie SaraMarie Sara en 2011.BiographieNaissance 27 juin 1964 (59 ans)Boulogne-Billancourt (Île-de-France, France)Nom de naissance Marie BourseillerPseudonyme Marie SaraNationalité FrançaiseActivité Torera (jusqu'en 2007)Père Antoine BourseillerMère Chantal DargetFratrie Christophe BourseillerConjoint Henri Leconte (1995-2004)Christophe Lambert (2004-2016)Autres informationsParti politique Mouvement démocrateAlternative 21 se...

 

 

  لمعانٍ أخرى، طالع مايفيل (توضيح). مايفيل   الإحداثيات 42°15′05″N 79°30′00″W / 42.25139°N 79.5°W / 42.25139; -79.5   [1] تاريخ التأسيس 1804  تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة تشاتوكوا  عاصمة لـ مقاطعة تشاتوكوا  خصائص جغرافية &#...

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Gun x Sword – berita · surat kabar · buku · cendekiawan · JSTOR Gun x SwordGambar DVD Gun X SwordGenreAksi AnimeSutradaraGoro TaniguchiStudioAnime International Company, AIC  Portal anime dan manga G...

 

 

City in Missouri, United StatesNorth Kansas City, MissouriCityCity of North Kansas City FlagNickname(s): Northtown, NKCLocation of North Kansas City, MissouriU.S. Census mapCoordinates: 39°08′23″N 94°33′51″W / 39.13972°N 94.56417°W / 39.13972; -94.56417CountryUnited StatesStateMissouriCountyClayArea[1] • Total4.61 sq mi (11.94 km2) • Land4.37 sq mi (11.32 km2) • Water0.24 s...

 

 

Mountain in Wales Cadair IdrisCader IdrisLlyn Cau with the summit of the mountain to the rightHighest pointElevation893 m (2,930 ft)Prominence608 m (1,995 ft)Parent peakPenygaderIsolation17.8 km (11.1 mi) ListingMarilyn, Hewitt, NuttallNamingEnglish translationChair of IdrisLanguage of nameWelshPronunciationWelsh: [ˈkadai̯r ˈɪdrɪs]GeographyLocationGwynedd, WalesParent rangeSnowdoniaOS gridSH711130Topo mapOS Landranger 124, Explorer OL23Clim...

14th Alberta LegislatureMajority parliament11 February 1960 – 9 May 1963Parliament leadersPremierErnest Charles ManningMay 31, 1943 – December 12, 1968CabinetManning cabinetParty caucusesGovernmentSocial Credit PartyCrossbenchAlberta Liberal PartyProgressive Conservative Association of AlbertaCoalitionLegislative AssemblySpeaker of theAssemblyPeter DawsonFebruary 25, 1937 – March 24, 1963Arthur J. DixonMarch 26, 1963 – March 1, 1972Members65 MLA seatsSovereignMona...

 

 

OnlyFansURLhttps://of.com/ Tipeadult content subscription service dan komunitas daring BahasaInggrisPemilikFenix International LimitedPembuatTim Stokely Berdiri sejakSeptember 2016 Lokasi kantor pusatLondon NegaraInggris Raya Peringkat Alexa493 (19 September 2020)4.158 (12 Februari 2019)785 (28 Juni 2020)371 (7 Juni 2021) StatusAktif OnlyFans adalah sebuah konten layanan berlangganan yang berbasis di London, Inggris.[1][2] Pembuat konten dapat memperoleh uang dari pengguna yan...

 

 

List of events ← 1808 1807 1806 1809 in the United States → 1810 1811 1812 Decades: 1780s 1790s 1800s 1810s 1820s See also: History of the United States (1789–1849) Timeline of United States history (1790–1819) List of years in the United States 1809 in the United States1809 in U.S. states States Connecticut Delaware Georgia Kentucky Maryland Massachusetts New Hampshire New Jersey New York North Carolina Ohio Pennsylvania Rhode Island South Carolina Tennessee Vermont Virginia ...

Slice Group adalah perusahaan perangkat lunak sebagai layanan asal Indonesia yang bergerak di bidang pemasaran influencer. Slice Group didirikan pada awal tahun 2022 oleh Jesse Bouman dan Nesha Hanzdima.[1] Produk utama mereka adalah platform pembayaran influencer, yang dirancang untuk membantu merek dan agensi mendistribusikan pembayaran ke banyak influencer sekaligus, dan memastikan influencer mendapatkan bayaran di waktu yang tepat.[2]Slice GroupLogo Slice GroupURLslice.idT...

 

 

Japanese manga by Riku Sanjo and Koji Inada and its franchise Dragon Quest: The Adventure of DaiCover of the first tankōbon volume, featuring Dai (front), Hadlar (back), Gome (bottom) and Brass (bottom right)DRAGON QUEST –ダイの大冒険–(Doragon Kuesuto: Dai no Daibōken)GenreAdventure[1]Fantasy[1]Created byYuji Horii MangaWritten byRiku SanjoIllustrated byKoji InadaPublished byShueishaEnglish publisherNA: Viz MediaImprintJump ComicsMagazineWeekly ...

 

 

Railway line in Kumamoto Prefecture, Japan This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Misumi Line – news · newspapers · books · scholar · JSTOR (July 2014) (Learn how and when to remove this message) Misumi LineThe Misumi Line between Ōda and Akase stations, January 2022OverviewNative name三角線Stat...

Unsanctioned release of confidential information to news media This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (July 2007) (Learn how and when to remove this message) A news leak is the unsanctioned release of confidential information to news media. It can also be the premature publication of information by a news outlet, of information that it has agreed not ...

 

 

Louis Moore BaconLouis Moore Bacon (lahir 1956) adalah seorang manajer [[dan trader komoditas yang menggunakan strategi makro global untuk berinvestasi di pasar. Saat ini ia diakui sebagai salah satu trader terbaik pada abad ke-20. Dengan kekayaan total sekitar $1,7 miliar dan menempati peringkat ke-707 orang terkaya di dunia versi Forbes.[1] Ia lahir di Raleigh, North Carolina. Bacon mengenyam pendidikan di Episcopal High School di Alexandria, Virginia dan di Middleburry College, yan...

 

 

Omán en los Juegos Olímpicos Bandera de OmánCódigo COI OMACON Comité Olímpico de Omán(pág. web)Juegos Olímpicos de Los Ángeles 1984Deportistas 16 en 3 deportesAbanderado Mohamed Al-BusaidiMedallas 0 0 0 0 Historia olímpicaJuegos de verano 1984 • 1988 • 1992 • 1996 • 2000 • 2004 • 2008 • 2012 • 2016 • 2020 •[editar datos en Wikidata] Omán estuvo representado ...

OttatiKomuneComune di OttatiLokasi Ottati di Provinsi SalernoNegaraItaliaWilayah CampaniaProvinsiSalerno (SA)Luas[1] • Total53,61 km2 (20,70 sq mi)Ketinggian[2]529 m (1,736 ft)Populasi (2016)[3] • Total680 • Kepadatan13/km2 (33/sq mi)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos84020Kode area telepon0828Situs webhttp://www.comune.ottati.sa.it Ottati adalah sebuah kota dan...

 

 

Syrian-based Palestinian nationalist organisation Not to be confused with Popular Front for the Liberation of Palestine. Popular Front for the Liberation of Palestine – General Command الجبهة الشعبية لتحرير فلسطين – القيادة العامةGeneral SecretaryTalal NajiFounderAhmed JibrilFounded1968 (1968)Split fromPopular Front for the Liberation of PalestineHeadquartersDamascus, SyriaParamilitary wingJihad Jibril BrigadesMembership500-1,000 (2004)[...

 

 

Giambattista Marino Marinism (Italian: marinismo, or secentismo, 17th century) is the name now given to an ornate, witty style of poetry and verse drama written in imitation of Giambattista Marino (1569–1625), following in particular La Lira and L'Adone. Features The critic James V. Mirollo, the author of the first monograph in English on the subject, distinguished the terms as follows:[1] Marinismo first appeared in the last [19th] century as a label for the themes and techniques o...

У этого термина существуют и другие значения, см. Соя (значения). Соя культурная Научная классификация Домен:ЭукариотыЦарство:РастенияКлада:Цветковые растенияКлада:ЭвдикотыКлада:СуперрозидыКлада:РозидыКлада:ФабидыПорядок:БобовоцветныеСемейство:БобовыеПодсемейство...

 

 

Species of bird Paradise jacamar at Novo Mundo, Mato Grosso State, Brazil Conservation status Least Concern  (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Order: Piciformes Family: Galbulidae Genus: Galbula Species: G. dea Binomial name Galbula dea(Linnaeus, 1758) Synonyms Alcedo dea Linnaeus, 1758 The paradise jacamar (Galbula dea) is a species of bird in the family Galbulidae. It is found in Bolivia, Brazil, E...