Unitary matrix

In linear algebra, an invertible complex square matrix U is unitary if its matrix inverse U−1 equals its conjugate transpose U*, that is, if

where I is the identity matrix.

In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger (), so the equation above is written

A complex matrix U is special unitary if it is unitary and its matrix determinant equals 1.

For real numbers, the analogue of a unitary matrix is an orthogonal matrix. Unitary matrices have significant importance in quantum mechanics because they preserve norms, and thus, probability amplitudes.

Properties

For any unitary matrix U of finite size, the following hold:

  • Given two complex vectors x and y, multiplication by U preserves their inner product; that is, Ux, Uy⟩ = ⟨x, y.
  • U is normal ().
  • U is diagonalizable; that is, U is unitarily similar to a diagonal matrix, as a consequence of the spectral theorem. Thus, U has a decomposition of the form where V is unitary, and D is diagonal and unitary.
  • . That is, will be on the unit circle of the complex plane.
  • Its eigenspaces are orthogonal.
  • U can be written as U = eiH, where e indicates the matrix exponential, i is the imaginary unit, and H is a Hermitian matrix.

For any nonnegative integer n, the set of all n × n unitary matrices with matrix multiplication forms a group, called the unitary group U(n).

Every square matrix with unit Euclidean norm is the average of two unitary matrices.[1]

Equivalent conditions

If U is a square, complex matrix, then the following conditions are equivalent:[2]

  1. is unitary.
  2. is unitary.
  3. is invertible with .
  4. The columns of form an orthonormal basis of with respect to the usual inner product. In other words, .
  5. The rows of form an orthonormal basis of with respect to the usual inner product. In other words, .
  6. is an isometry with respect to the usual norm. That is, for all , where .
  7. is a normal matrix (equivalently, there is an orthonormal basis formed by eigenvectors of ) with eigenvalues lying on the unit circle.

Elementary constructions

2 × 2 unitary matrix

One general expression of a 2 × 2 unitary matrix is

which depends on 4 real parameters (the phase of a, the phase of b, the relative magnitude between a and b, and the angle φ). The form is configured so the determinant of such a matrix is

The sub-group of those elements with is called the special unitary group SU(2).

Among several alternative forms, the matrix U can be written in this form:

where and above, and the angles can take any values.

By introducing and has the following factorization:

This expression highlights the relation between 2 × 2 unitary matrices and 2 × 2 orthogonal matrices of angle θ.

Another factorization is[3]

Many other factorizations of a unitary matrix in basic matrices are possible.[4][5][6][7][8][9]

See also

References

  1. ^ Li, Chi-Kwong; Poon, Edward (2002). "Additive decomposition of real matrices". Linear and Multilinear Algebra. 50 (4): 321–326. doi:10.1080/03081080290025507. S2CID 120125694.
  2. ^ Horn, Roger A.; Johnson, Charles R. (2013). Matrix Analysis. Cambridge University Press. doi:10.1017/CBO9781139020411. ISBN 9781139020411.
  3. ^ Führ, Hartmut; Rzeszotnik, Ziemowit (2018). "A note on factoring unitary matrices". Linear Algebra and Its Applications. 547: 32–44. doi:10.1016/j.laa.2018.02.017. ISSN 0024-3795. S2CID 125455174.
  4. ^ Williams, Colin P. (2011). "Quantum gates". In Williams, Colin P. (ed.). Explorations in Quantum Computing. Texts in Computer Science. London, UK: Springer. p. 82. doi:10.1007/978-1-84628-887-6_2. ISBN 978-1-84628-887-6.
  5. ^ Nielsen, M.A.; Chuang, Isaac (2010). Quantum Computation and Quantum Information. Cambridge, UK: Cambridge University Press. p. 20. ISBN 978-1-10700-217-3. OCLC 43641333.
  6. ^ Barenco, Adriano; Bennett, Charles H.; Cleve, Richard; DiVincenzo, David P.; Margolus, Norman; Shor, Peter; et al. (1 November 1995). "Elementary gates for quantum computation". Physical Review A. 52 (5). American Physical Society (APS): 3457–3467, esp.p. 3465. arXiv:quant-ph/9503016. Bibcode:1995PhRvA..52.3457B. doi:10.1103/physreva.52.3457. ISSN 1050-2947. PMID 9912645. S2CID 8764584.
  7. ^ Marvian, Iman (10 January 2022). "Restrictions on realizable unitary operations imposed by symmetry and locality". Nature Physics. 18 (3): 283–289. arXiv:2003.05524. Bibcode:2022NatPh..18..283M. doi:10.1038/s41567-021-01464-0. ISSN 1745-2481. S2CID 245840243.
  8. ^ Jarlskog, Cecilia (2006). "Recursive parameterisation and invariant phases of unitary matrices". Journal of Mathematical Physics. 47 (1): 013507. arXiv:math-ph/0510034. Bibcode:2006JMP....47a3507J. doi:10.1063/1.2159069.
  9. ^ Alhambra, Álvaro M. (10 January 2022). "Forbidden by symmetry". News & Views. Nature Physics. 18 (3): 235–236. Bibcode:2022NatPh..18..235A. doi:10.1038/s41567-021-01483-x. ISSN 1745-2481. S2CID 256745894. The physics of large systems is often understood as the outcome of the local operations among its components. Now, it is shown that this picture may be incomplete in quantum systems whose interactions are constrained by symmetries.

Read other articles:

Anton Colijn, Frits Wissel & Jean Jacques Dozy (Ekspedisi Carstensz, 1936) Ekspedisi Carstensz dilakukan pada tahun 1936 oleh Antonie Hendrikus Colijn, Jean Jacques Dozy dan Frits Julius Wissel. Mereka bertolak dari Aika, sebuah tempat di pantai selatan Nugini Belanda pada tanggal 29 Oktober dan kembali pada tanggal 24 Desember. Tujuan ekspedisi ini tercapai dengan pendakian puncak tertinggi Gunung Carstensz. Dozy adalah seorang geolog, dan menemukan Gunung Bijih, yang menyimpan emas terb...

 

Campionato mondiale di Formula 1 2009Edizione n. 60 del Campionato mondiale di Formula 1 Dati generaliInizio29 marzo Termine1º novembre Prove17 Titoli in palioPiloti Jenson Buttonsu Brawn BGP 001 Costruttori Brawn Altre edizioniPrecedente - Successiva Edizione in corso Il campionato mondiale di Formula 1 2009 organizzato dalla FIA è stata, nella storia della categoria, la 60ª ad assegnare il Campionato Piloti e la 52ª ad assegnare il Campionato Costruttori. Il campionato piloti �...

 

Bagian dari tembok kota Beijing tahun 1900. Xuanwumen (Hanzi sederhana: 宣武门; Hanzi tradisional: 宣武門; Pinyin: xuānwǔmén; bahasa Manchu:ᡥᠣᡵᠣᠨᠪᡝᠠᠯᡤᡳᠮᠪᡠᡵᡝᡩᡠᡴᠠ;Möllendorff:horon be algimbure duka;[1] harfiah gerbang kekuatan militer) adalah sebuah gerbang yang dulunya berada di tembok kota Beijing. Pada tahun 1960-an, Xuanwumen dirobohkan karena akan dibangun Beijing Subway. Saat ini, Xuanwumen menjadi simpul transportasi ...

Sutradara Polandia Paweł Pawlikowski memenangkan Academy Award untuk Film Berbahasa Asing Terbaik untuk filmnya Ida Academy of Motion Picture Arts and Sciences telah mengundang industri-industri film dari berbagai negara untuk mewakilkan film terbaik mereka pada Academy Award untuk Film Berbahasa Asing Terbaik setiap tahun sejak penghargaan tersebut dibuat pada 1956.[1] Penghargaan tersebut diberikan setiap tahun oleh Academy untuk sebuah film durasi cerita yang diproduksi di luar Am...

 

Cinderella and Four Knights신데렐라와 네 명의 기사Sinderellawa Ne Myeongui GisaGenreRomansa Fantasi DramaBerdasarkanCinderella and Four Knightsoleh Baek MyoDitulis olehMin Ji-eun Won Young-silSutradaraKwon Hyuk-chanPemeranPark So-dam Jung Il-woo Ahn Jae-hyun Lee Jung-shinNegara asalKorea SelatanBahasa asliKoreaJmlh. episode16ProduksiLokasi produksiKorea SelatanRumah produksiHB EntertainmentRilis asliRilis12 Agustus (2016-08-12) –1 Oktober 2016 (2016-10-1) Cinderell...

 

أيرمونت   الإحداثيات 41°05′56″N 74°06′00″W / 41.09889°N 74.1°W / 41.09889; -74.1   [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة روكلاند  خصائص جغرافية  المساحة 12.006372 كيلومتر مربع12.03005 كيلومتر مربع (1 أبريل 2010)  ارتفاع 178 متر  عدد السكان...

American children's television series The Charlie Horse Music PizzaGenrePreschoolCreated byShari LewisJeremy TarcherDeveloped byMallory TarcherShari LewisBernard RothmanWritten byShari LewisMallory TarcherBernard RothmanDirected byNiles DavenportStan JacobsonPresented byShari LewisStarringShari LewisLamb ChopCharlie HorseHush PuppyDom DeLuiseWezley MorrisChancz PerryChantal StrandOpening themeCharlie Horse Music PizzaEnding themeStill Be FriendsCountry of originUnited StatesCanadaOriginal lan...

 

Eckhart von HochheimLahirc. 1260Dekat Gotha, Kekaisaran Romawi SuciMeninggal1327 or 1328Kemungkinan AvignonNama lainMeister EckhartEraFilsafat abad pertengahanKawasanFilsafat BaratAliranMistisisme KristenIntelektualisme metafisika Dipengaruhi Pseudo-Dionisius, Proclus, Thomas Aquinas, Johannes Scotus Eriugena Memengaruhi Johannes Tauler, Hendrikus Suso, Nicolaus Cusanus, Eckhart Tolle, Gustav Landauer Bagian dari seri tentangMistisisme Kristiani Teologi · Filsafat Apofatis Asketis...

 

Aur Tajungkang Tengah SawahKelurahanSurau Syekh Bantam di Kelurahan Aur Tajungkang Tengah Sawah, Kecamatan Guguk Panjang, Kota BukittinggiNegara IndonesiaProvinsiSumatera BaratKotaBukittinggiKecamatanGuguk PanjangKode Kemendagri13.75.01.1004 Kode BPS1375010004 Luas-Jumlah penduduk7.352 jiwa[1]Kepadatan- Aur Tajungkang Tengah Sawah adalah salah satu kelurahan di kecamatan Guguk Panjang, Bukittinggi, Sumatera Barat, Indonesia.[2] Referensi ^ Tabel penduduk Bukittinggi tahun...

NASCAR Hall of Fame Informasi stadionPemilikCity of CharlotteOperatorCharlotte Regional Visitors AuthorityLokasiLokasi400 E. Martin Luther King, Jr. BlvdCharlotteKonstruksiMulai pembangunanJanuary 2007Dibuka11 Mei 2010Biaya pembuatanUS $160 jutaArsitekPei Cobb Freed & PartnersSunting kotak info • L • BBantuan penggunaan templat ini NASCAR Hall of Fame menampilkan pembalap yang telah memberikan kontribusi besar untuk olahraga NASCAR. Ini juga menunjukkan orang-orang yang tela...

 

President of South Africa from 1999 to 2008 Thabo MbekiMbeki in 20032nd President of South AfricaIn office14 June 1999 – 24 September 2008DeputyJacob Zuma(1999–2005)Phumzile Mlambo-Ngcuka(2005–2008)Preceded byNelson MandelaSucceeded byIvy Matsepe-Casaburri (acting)Kgalema Motlanthe12th President of the African National CongressIn office20 December 1997 – 18 December 2007DeputyJacob ZumaPreceded byNelson MandelaSucceeded byJacob Zuma1st Deputy Preside...

 

English painter This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: James Hawkins artist – news · newspapers · books · scholar · JSTOR (December 2013) (Learn how and when to remove this message...

В Википедии есть статьи о других людях с такой фамилией, см. Веселовский; Веселовский, Александр. Александр Николаевич Веселовский Дата рождения 4 (16) февраля 1838(1838-02-16) Место рождения Москва Дата смерти 10 (23) октября 1906(1906-10-23) (68 лет) Место смерти Санкт-Петербург Страна  Ро...

 

Pour les articles homonymes, voir San Gabriel. Cet article est une ébauche concernant la montagne. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Monts San Gabriel Le bassin de Los Angeles Géographie Altitude 3 068 m, Mont San Antonio (en) Massif Transverse Ranges(Chaînes côtières du Pacifique) Administration Pays États-Unis État Californie modifier  Les monts San Gabriel sont situés...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Blossoms of Fire – news · newspapers · books · scholar · JSTOR (January 2017) (Learn how and when to remove this message) 2000 filmBlossoms of FireDVD coverDirected byMaureen Gosling Ellen Osborne[1]Written byMaureen GoslingToni HannaProduced byMaureen ...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) الدوري البرازيلي لكرة القدم 1996 تفاصيل الموسم 1996 النسخة 26  البلد  البرازيل التاريخ بداية:8 أغسطس 1996...

 

Human settlement in EnglandCorringhamSt Mary the Virgin Church, CorringhamCorringhamLocation within EssexPopulation8,884 (2001)[1]OS grid referenceTQ708832Unitary authorityThurrockCeremonial countyEssexRegionEastCountryEnglandSovereign stateUnited KingdomPost townSTANFORD-LE-HOPEPostcode districtSS17Dialling code01375PoliceEssexFireEssexAmbulanceEast of England UK ParliamentSouth Basildon and East Thurrock List of places UK England Essex 51°31...

 

Neighborhood in Rio de Janeiro, Rio de Janeiro, BrazilDeodoroNeighborhoodDeodoroLocation in Rio de JaneiroShow map of Rio de JaneiroDeodoroDeodoro (Brazil)Show map of BrazilCoordinates: 22°51′18″S 43°23′07″W / 22.85500°S 43.38528°W / -22.85500; -43.38528Country BrazilStateRio de Janeiro (RJ)Municipality/CityRio de JaneiroZoneWest ZoneArea • Total46,405 ha (114,669 acres)Population (2010) • Total10 842 Deodoro is a...

Sastra Sastra lisan Folklor Dongeng Lagu Legenda Mitos Peribahasa Wiracarita Penampilan Buku audio Permainan panggung Pidato Genre tertulis utama Drama Pementasan Komedi Tragedi Tragikomedi Puisi Epik Lirik Prosa Cerita pendek Novel/Roman Novela Fiksi Bacaan anak Cinta Kejahatan Sejarah Spekulatif Fantasi Ilmiah Satir Nonfiksi Akademik Filsafat Sejarah Epistola Kehidupan Autobiografi Biografi Buku harian Memoar Kewartawanan Perjalanan Surat Sejarah dan daftar Sejarah Kontemporer Garis besar G...

 

Ongoing COVID-19 viral pandemic in Davao Region, the Philippines COVID-19 pandemic in the Davao RegionDiseaseCOVID-19Virus strainSARS-CoV-2LocationDavao RegionFirst outbreakWuhan, Hubei, ChinaIndex caseTagumArrival dateMarch 15, 2020(4 years, 2 months, 4 weeks and 2 days)Confirmed cases29,382Recovered26,314Deaths908Government websitero11.doh.gov.ph The COVID-19 pandemic reached the Davao Region on March 15, 2020, when the first case of the disease was confirmed i...