Hilbert matrix

In linear algebra, a Hilbert matrix, introduced by Hilbert (1894), is a square matrix with entries being the unit fractions

For example, this is the 5 × 5 Hilbert matrix:

The entries can also be defined by the integral

that is, as a Gramian matrix for powers of x. It arises in the least squares approximation of arbitrary functions by polynomials.

The Hilbert matrices are canonical examples of ill-conditioned matrices, being notoriously difficult to use in numerical computation. For example, the 2-norm condition number of the matrix above is about 4.8×105.

Historical note

Hilbert (1894) introduced the Hilbert matrix to study the following question in approximation theory: "Assume that I = [a, b], is a real interval. Is it then possible to find a non-zero polynomial P with integer coefficients, such that the integral

is smaller than any given bound ε > 0, taken arbitrarily small?" To answer this question, Hilbert derives an exact formula for the determinant of the Hilbert matrices and investigates their asymptotics. He concludes that the answer to his question is positive if the length ba of the interval is smaller than 4.

Properties

The Hilbert matrix is symmetric and positive definite. The Hilbert matrix is also totally positive (meaning that the determinant of every submatrix is positive).

The Hilbert matrix is an example of a Hankel matrix. It is also a specific example of a Cauchy matrix.

The determinant can be expressed in closed form, as a special case of the Cauchy determinant. The determinant of the n × n Hilbert matrix is

where

Hilbert already mentioned the curious fact that the determinant of the Hilbert matrix is the reciprocal of an integer (see sequence OEISA005249 in the OEIS), which also follows from the identity

Using Stirling's approximation of the factorial, one can establish the following asymptotic result:

where an converges to the constant as , where A is the Glaisher–Kinkelin constant.

The inverse of the Hilbert matrix can be expressed in closed form using binomial coefficients; its entries are

where n is the order of the matrix.[1] It follows that the entries of the inverse matrix are all integers, and that the signs form a checkerboard pattern, being positive on the principal diagonal. For example,

The condition number of the n × n Hilbert matrix grows as .

Applications

The method of moments applied to polynomial distributions results in a Hankel matrix, which in the special case of approximating a probability distribution on the interval [0, 1] results in a Hilbert matrix. This matrix needs to be inverted to obtain the weight parameters of the polynomial distribution approximation.[2]

References

  1. ^ Choi, Man-Duen (1983). "Tricks or Treats with the Hilbert Matrix". The American Mathematical Monthly. 90 (5): 301–312. doi:10.2307/2975779. JSTOR 2975779.
  2. ^ Munkhammar, Joakim; Mattsson, Lars; Rydén, Jesper (2017). "Polynomial probability distribution estimation using the method of moments". PLOS ONE. 12 (4): e0174573. Bibcode:2017PLoSO..1274573M. doi:10.1371/journal.pone.0174573. PMC 5386244. PMID 28394949.

Further reading

Read other articles:

Sun Yat-sen Tiga Asas-Pokok Rakyat (Hanzi tradisional: 三民主義; Hanzi sederhana: 三民主义; pinyin: Sānmín zhǔyì; Wade-Giles: San-min Chu-i) adalah sebuah ideologi politik yang dirancang oleh Sun Yat-sen sebagai dasar ideologi negara untuk membangun Tiongkok yang bebas, makmur, dan kuat. Ideologi ini diimplementasikan dalam pemerintahan Republik Tiongkok, yang memerintah Pulau Formosa, Penghu, Kinmen, dan Matsu. Ideologi ini menjadi bagian tak terpisahkan dari kehidupan bernegara ...

 

Untuk daftar, lihat Daftar Perdana Menteri Portugal. Perdana Menteri Republik PortugalLambang PortugalBendera Perdana MenteriPetahanaAntónio Costasejak 26 November 2015Pemerintah PortugalGelarTn. Perdana Menteri (informal)His Excellency (diplomatik)JenisKepala PemerintahanAnggotaDewan NegaraDewan MenteriDewan EropaKediamanSão Bento MansionKantorLisbon, PortugalDitunjuk olehPresidenMasa jabatanTanpa batas waktuPejabat perdanaPedro de Sousa Holstein, 1st Duke of PalmelaDibentuk24 Septemb...

 

Member of the New Jersey Senate For other people with similar names, see Brian Stack (disambiguation). Brian P. StackStack during a parade in Union CitySeptember 11, 2011Member of the New Jersey Senatefrom the 33rd districtIncumbentAssumed office January 8, 2008Preceded byBernard KennyMember of the New Jersey General Assemblyfrom the 33rd districtIn officeJanuary 13, 2004 – January 8, 2008Preceded byRafael FraguelaSucceeded byRuben J. RamosCaridad RodriguezMayor of Union City, ...

Artikel ini adalah tentang putra Perdana Menteri Britania Raya Sir Winston Churchill. Untuk ayah perdana menteri tersebut, lihat Lord Randolph Churchill. Randolph Churchill Randolph Frederick Edward Spencer-Churchill MBE (28 Mei 1911 – 6 Juni 1968) adalah seorang jurnalis dan Anggota Parlemen Partai Konservatif untuk Preston dari 1940 sampai 1945. Ia adalah putra dari Perdana Menteri Inggris Sir Winston Churchill dan istrinya, Clementine Churchill, Baroness Spencer-Churchill. ...

 

В Википедии есть статьи о других людях с такой фамилией, см. Альтфатер. Михаил Егорович Альтфатер Дата рождения 8 (20) октября 1840(1840-10-20) Место рождения Санкт-Петербург, Российская империя Дата смерти 24 августа 1918(1918-08-24) (77 лет) Место смерти Петроград, РСФСР Принадлежнос�...

 

Curtain CallNama alternatifA Tree Dies Standing (former)Hangul커튼콜 Alih Aksara yang DisempurnakanKeoteunkol Ditulis olehJo Seong-geolSutradaraYun Sang-HoPemeranKang Ha-neulHa Ji-wonNegara asalKorea SelatanBahasa asliKoreaJmlh. episode16ProduksiRumah produksiVictory ContentsDistributorKBSRilis asliJaringanKBS2Format gambar1080i (HDTV)Format audioDolby DigitalRilis31 Oktober (2022-10-31) –27 Desember 2022 (2022-12-27) Curtain Call (Hangul: 커튼콜; RR:&...

Police Training University Imam Ali Officers' Universityدانشگاه افسری امام علیSeal of the UniversityFormer namesOfficers' SchoolMottoPersian: ایمان، انضباط، آموزشMotto in EnglishFaith, Discipline, EducationTypeMilitary academyEstablishedDecember 5, 1921 (1921-12-05)Affiliation Islamic Republic of Iran Army Ground ForcesCommandant2nd Brigadier General Ali MahdaviLocationTehran, IranCampusUrbanColours     Khaki, Cream and B...

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Le ton de cet article est trop promotionnel ou publicitaire (avril 2023). Vous êtes invité à améliorer l'article de manière à adopter un ton neutre (aide quant au style) ou discutez-en. Vous pouvez également préciser les sections non neutres en utilisant {{section promotionnelle}} et de souligner les passages problématiques avec {{passage promotionnel}}. Si ce bandeau n'est plus pertinent, retirez-le. Cl...

 

Semantic object to which an operator applies In formal semantics, the scope of a semantic operator is the semantic object to which it applies. For instance, in the sentence Paulina doesn't drink beer but she does drink wine, the proposition that Paulina drinks beer occurs within the scope of negation, but the proposition that Paulina drinks wine does not. Scope can be thought of as the semantic order of operations. One of the major concerns of research in formal semantics is the relationship ...

Yedioth AhronothHalaman depan Yedioth Ahronoth tanggal 31 Maret 1940TipeSurat kabar harianFormatTabloidPemilikYedioth Ahronoth GroupPendiriNachum KumarovPenerbitArnon MozesRedaksiRon YaronDidirikan1939 (1939)Pandangan politikSentrisme/Tengah-kiriBahasaIbraniPusat138 Petah Tikva Rd.,Tel Aviv 67446, IsraelSirkulasi surat kabar300.000 hari kerja600.000 akhir pekan[1]Situs webwww.ynetnews.com Yedioth Ahronoth (Ibrani: ידיעות אחרונות, Yedi'ot Aharonotⓘ, harf. Berita...

 

Provinsi CamagüeyProvinsi di KubaPantai Santa LuciaNegaraKubaIbukotaCamagüeyLuas[1] • Total15.413,82 km2 (595,131 sq mi)Populasi (2010-12-31)[1] • Total782.458 • Kepadatan0,51/km2 (1,3/sq mi)Zona waktuUTC-5 (EST)Kode area telepon+53-32Situs webPortal Camagüey Camagüey (pengucapan bahasa Spanyol: [kamaˈɣwej]) adalah provinsi di Kuba terbesar. Ibu kotanya adalah Camagüey. Kota lainnya meliputi Florida dan N...

 

Election in Tennessee Main article: 1900 United States presidential election 1900 United States presidential election in Tennessee ← 1896 November 6, 1900 1904 →   Nominee William Jennings Bryan William McKinley Party Democratic Republican Home state Nebraska Ohio Running mate Adlai Stevenson I Theodore Roosevelt Electoral vote 12 0 Popular vote 145,240 123,108 Percentage 53.03% 44.95% County Results Bryan   50-60%   60-70% &#...

1612/13 play by John Webster For other uses, see The Duchess of Malfi (disambiguation). The Duchess of MalfiTitle page of The Duchess of MalfiWritten byJohn WebsterCharactersAntonio Bologna Delio Daniel de BosolaThe CardinalFerdinandCastruchioThe Duchess of MalfiCariolaJuliaDate premiered1613 or 1614Place premieredBlackfriars Theatre, LondonOriginal languageEarly Modern EnglishSubjectcorruption, cruelty, social classGenreRevenge tragedySettingMalfi, Rome, Milan; 1504–10 The Duchess of Malfi...

 

لوار أتلانتيك الكلاسيكي 2021 تفاصيل السباقسلسلة21. لوار أتلانتيك الكلاسيكيمنافسةطواف أوروبا للدراجات 2021 1.1‏التاريخ2 أكتوبر 2021المسافات182٫8 كمالبلد فرنسانقطة البدايةLa Haie-Fouassière [الإنجليزية]‏نقطة النهايةLa Haie-Fouassière [الإنجليزية]‏المنصةالفائز ألان ريو [الإنجليز...

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Vittorio Falmec San Martino Colle. Associazione Sportiva Vittorio VenetoStagione 1942-1943Sport calcio Squadra Vittorio Veneto Allenatore Enrico Colombari Presidente Aldo Marinotti Serie C7º posto nel girone A. 1941-1942 1945-1946 Si invita a seguire il modello ...

2022 studio album by Joey Badass2000Studio album by Joey BadassReleasedJuly 22, 2022Recorded2018–2022GenreHip hopjazz rapEast Coast hip hopLength52:56Label Pro Era Cinematic Columbia Producer0445cBBeardedCardiakChuck StrangersDopeBoyzMuzicDreamlife BeatsErick the ArchitectFred WarmsleyKirk KnightMark BorinoMarzHeavy MellowMarvinoBeatsMcClenneyMike Will Made ItRahkiSal DaliSean C & LVStatik SelektahJoey Badass chronology All-Amerikkkan Badass(2017) 2000(2022) Singles from 2000 H...

 

جامع زيارة تورا معلومات عامة القرية أو المدينة أربيل / قضاء شقلاوة الدولة العراق تاريخ بدء البناء عهد عمر بن الخطاب المواصفات المساحة 800م2 عدد المآذن 1 التفاصيل التقنية المواد المستخدمة الحجر والطابوق التصميم والإنشاء النمط المعماري إسلامية المقاول عبد الله بن عمر بن الخط...

 

Ministério da Instrução Pública foi a denominação dada em Portugal, entre 1913 e 1936, ao departamento governamental responsável pela política da educação. Em 1936 passou a denominar-se Ministério da Educação Nacional.[1] Ver também Lista dos ministros responsáveis pela Educação em Portugal Ministério da Educação (Portugal) Referências ↑ Cf. Lei n.º 1941, de 19 de abril de 1936. Este artigo é um esboço. Você pode ajudar a Wikipédia expandindo-o. Editor: considere m...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (July 2017) (Learn how and when to remove this message)This article needs additional citations for verification. Please help improve this article by adding cita...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Politics of Myanmar – news · newspapers · books · scholar · JSTOR (March 2021) (Learn how and when to remo...