Adjunction formula

In mathematics, especially in algebraic geometry and the theory of complex manifolds, the adjunction formula relates the canonical bundle of a variety and a hypersurface inside that variety. It is often used to deduce facts about varieties embedded in well-behaved spaces such as projective space or to prove theorems by induction.

Adjunction for smooth varieties

Formula for a smooth subvariety

Let X be a smooth algebraic variety or smooth complex manifold and Y be a smooth subvariety of X. Denote the inclusion map YX by i and the ideal sheaf of Y in X by . The conormal exact sequence for i is

where Ω denotes a cotangent bundle. The determinant of this exact sequence is a natural isomorphism

where denotes the dual of a line bundle.

The particular case of a smooth divisor

Suppose that D is a smooth divisor on X. Its normal bundle extends to a line bundle on X, and the ideal sheaf of D corresponds to its dual . The conormal bundle is , which, combined with the formula above, gives

In terms of canonical classes, this says that

Both of these two formulas are called the adjunction formula.

Examples

Degree d hypersurfaces

Given a smooth degree hypersurface we can compute its canonical and anti-canonical bundles using the adjunction formula. This reads as

which is isomorphic to .

Complete intersections

For a smooth complete intersection of degrees , the conormal bundle is isomorphic to , so the determinant bundle is and its dual is , showing

This generalizes in the same fashion for all complete intersections.

Curves in a quadric surface

embeds into as a quadric surface given by the vanishing locus of a quadratic polynomial coming from a non-singular symmetric matrix.[1] We can then restrict our attention to curves on . We can compute the cotangent bundle of using the direct sum of the cotangent bundles on each , so it is . Then, the canonical sheaf is given by , which can be found using the decomposition of wedges of direct sums of vector bundles. Then, using the adjunction formula, a curve defined by the vanishing locus of a section , can be computed as

Poincaré residue

The restriction map is called the Poincaré residue. Suppose that X is a complex manifold. Then on sections, the Poincaré residue can be expressed as follows. Fix an open set U on which D is given by the vanishing of a function f. Any section over U of can be written as s/f, where s is a holomorphic function on U. Let η be a section over U of ωX. The Poincaré residue is the map

that is, it is formed by applying the vector field ∂/∂f to the volume form η, then multiplying by the holomorphic function s. If U admits local coordinates z1, ..., zn such that for some i, f/∂zi ≠ 0, then this can also be expressed as

Another way of viewing Poincaré residue first reinterprets the adjunction formula as an isomorphism

On an open set U as before, a section of is the product of a holomorphic function s with the form df/f. The Poincaré residue is the map that takes the wedge product of a section of ωD and a section of .

Inversion of adjunction

The adjunction formula is false when the conormal exact sequence is not a short exact sequence. However, it is possible to use this failure to relate the singularities of X with the singularities of D. Theorems of this type are called inversion of adjunction. They are an important tool in modern birational geometry.

The Canonical Divisor of a Plane Curve

Let be a smooth plane curve cut out by a degree homogeneous polynomial . We claim that the canonical divisor is where is the hyperplane divisor.

First work in the affine chart . The equation becomes where and . We will explicitly compute the divisor of the differential

At any point either so is a local parameter or so is a local parameter. In both cases the order of vanishing of at the point is zero. Thus all contributions to the divisor are at the line at infinity, .

Now look on the line . Assume that so it suffices to look in the chart with coordinates and . The equation of the curve becomes

Hence

so

with order of vanishing . Hence which agrees with the adjunction formula.

Applications to curves

The genus-degree formula for plane curves can be deduced from the adjunction formula.[2] Let C ⊂ P2 be a smooth plane curve of degree d and genus g. Let H be the class of a hyperplane in P2, that is, the class of a line. The canonical class of P2 is −3H. Consequently, the adjunction formula says that the restriction of (d − 3)H to C equals the canonical class of C. This restriction is the same as the intersection product (d − 3)HdH restricted to C, and so the degree of the canonical class of C is d(d−3). By the Riemann–Roch theorem, g − 1 = (d−3)dg + 1, which implies the formula

Similarly,[3] if C is a smooth curve on the quadric surface P1×P1 with bidegree (d1,d2) (meaning d1,d2 are its intersection degrees with a fiber of each projection to P1), since the canonical class of P1×P1 has bidegree (−2,−2), the adjunction formula shows that the canonical class of C is the intersection product of divisors of bidegrees (d1,d2) and (d1−2,d2−2). The intersection form on P1×P1 is by definition of the bidegree and by bilinearity, so applying Riemann–Roch gives or

The genus of a curve C which is the complete intersection of two surfaces D and E in P3 can also be computed using the adjunction formula. Suppose that d and e are the degrees of D and E, respectively. Applying the adjunction formula to D shows that its canonical divisor is (d − 4)H|D, which is the intersection product of (d − 4)H and D. Doing this again with E, which is possible because C is a complete intersection, shows that the canonical divisor C is the product (d + e − 4)HdHeH, that is, it has degree de(d + e − 4). By the Riemann–Roch theorem, this implies that the genus of C is

More generally, if C is the complete intersection of n − 1 hypersurfaces D1, ..., Dn − 1 of degrees d1, ..., dn − 1 in Pn, then an inductive computation shows that the canonical class of C is . The Riemann–Roch theorem implies that the genus of this curve is

In low dimensional topology

Let S be a complex surface (in particular a 4-dimensional manifold) and let be a smooth (non-singular) connected complex curve. Then[4]

where is the genus of C, denotes the self-intersections and denotes the Kronecker pairing .

See also

References

  1. ^ Zhang, Ziyu. "10. Algebraic Surfaces" (PDF). Archived from the original (PDF) on 2020-02-11.
  2. ^ Hartshorne, chapter V, example 1.5.1
  3. ^ Hartshorne, chapter V, example 1.5.2
  4. ^ Gompf, Stipsicz, Theorem 1.4.17

Read other articles:

Kota Passi component city (en) Tempat categoria:Articles mancats de coordenades Negara berdaulatFilipinaRegion di FilipinaVisayas BaratProvinsi di FilipinaIloilo NegaraFilipina PendudukTotal88.873  (2020 )Tempat tinggal21.671  (2020 )Bahasa resmibahasa Karaik’a, Hiligaynon, Capisnon (en), Bahasa Ati dan Tagalog GeografiLuas wilayah251,39 km² [convert: unit tak dikenal]Ketinggian82 m Berbatasan denganBingawan San Enrique San Rafael SejarahPembuatan1766 Informasi tambahanKode ...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. RONJA (Reasonable Optical Near Joint Access) adalah sebuah sistem komunikasi optis ruang bebas yang berasal dari Republik Ceko. Mengirimkan data secara nirkabel menggunakan berkas cahaya. Ronja dapat digunakan untuk membuat Ethernet point-to-point lin...

 

Luca ParmitanoLahir27 September 1976 (umur 47)Paternò, SisiliaStatusAktifPekerjaanPilot, Angkatan Udara ItaliaKarier luar angkasaAntariksawan ASI/ESAPekerjaan sebelumnyaPilot Uji CobaPangkatLetnan kolonelWaktu di luar angkasa166 hari 6 jam 17 menitTotal EVA2Total waktu EVA7 jam, 39 menitMisiSoyuz TMA-09M (Ekspedisi 36/37), Soyuz MS-13 (Ekspedisi 60/61)Lambang misi Situs weblucaparmitano.esa.int Luca Parmitano (lahir 27 September 1976) adalah seorang insinyur dan antariksawan Italia dal...

Junaedi Pa Sahli Tk. III Kasad Bidang PolkamnasMasa jabatan27 Juni 2022 – 29 Agustus 2022 PendahuluMohammad MunibPenggantiHarfendiWaaster Kasad Bidang Tahwil Komsos dan Bakti TNIMasa jabatan17 Nopember 2021 – 27 Juni 2022 PendahuluToto NurwantoPenggantiRudy Rachmat NugrahaKapok Sahli Pangdam I/Bukit BarisanMasa jabatan24 Maret 2021 – 17 Nopember 2021 PendahuluJohn SihombingPenggantiImmer Hotma Partogi ButarbutarKadep Oyu SeskoadMasa jabatan2020 – 24...

 

Avenue of Stars (Hanzi: 星光大道), mengambil contoh dari Hollywood Walk of Fame, terletak di sepanjang jalan Victoria Harbour di Tsim Sha Tsui, Hong Kong. Ini adalah penghargaan yang diberikan pada kesohor dari dunia Industri Perfilman Hong Kong. Sejarah Cetakan tangan dan tanda tangan dari sutradara John Woo Pada tahun 1982, kelompok New World Group membangun tempat pejalan kaki sepanjang tepi laut di sekitaran New World Centre di Tsim Sha Tsui East, Kowloon, Hong Kong. Pada tahun 2...

 

Untuk tempat lain yang bernama sama, lihat Galur. GalurKapanewonNegara IndonesiaProvinsiDaerah Istimewa YogyakartaKabupatenKulon ProgoPemerintahan • PanewuLatnyana, S.AgPopulasi • Total- jiwaKode Kemendagri34.01.04 Kode BPS3401040 Luas- km²Desa/kelurahan7 Galur (Jawa: ꦒꦭꦸꦂ, translit. Galur) adalah sebuah kecamatan di Kabupaten Kulon Progo, Provinsi Daerah Istimewa Yogyakarta, Indonesia. Pembagian administratif Kepanewon Galur terdiri dari kalurah...

Secret InvasionGenre Aksi petualangan Thriller mata-mata Fiksi ilmiah Pahlawan super PembuatKyle BradstreetBerdasarkanMarvel ComicsSutradaraAli SelimPemeran Samuel L. Jackson Ben Mendelsohn Kingsley Ben-Adir Killian Scott Samuel Adewunmi Dermot Mulroney Richard Dormer Emilia Clarke Olivia Colman Don Cheadle Charlayne Woodard Christopher McDonald Katie Finneran MusikKris BowersNegara asalAmerika SerikatBahasa asliInggrisJmlh. musim1Jmlh. episode6ProduksiProduser eksekutif Brian Tucker Kyle Br...

 

Questa voce o sezione sull'argomento botanici britannici non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. John Tradescant in un ritratto di Cornelius de Neve John Tradescant, detto il Vecchio (intorno al 1570 – 15 o 16 aprile 1638), è stato un naturalista, botanico, collezionista e viaggiatore britannico, padre di John Tradescant il Giovane. Nato proba...

 

MoctezumaAngkutan cepat STCTanda bagian depan untuk Moctezuma, 27 Juni 2012Koordinat19°25′38″N 99°06′37″W / 19.427218°N 99.110305°W / 19.427218; -99.110305Koordinat: 19°25′38″N 99°06′37″W / 19.427218°N 99.110305°W / 19.427218; -99.110305Jumlah peron2Jumlah jalur2SejarahDibuka4 September 1969Operasi layanan Stasiun sebelumnya   Mexico City Metro   Stasiun berikutnya Templat:Mexico City Metro stationsmenuju Templa...

Sashadhar MukherjeeLahir29 September 1909Jhansi, Uttar Pradesh, IndiaMeninggal3 November 1990 (aged 81)Mumbai, Maharashtra, IndiaPekerjaanPembuat filmSuami/istriSati DeviAnak6 (mel. Joy, Deb, dan Shomu)KeluargaKeluarga Mukherjee-Samarth Sashadhar Mukherjee (29 September 1909 – 3 November 1990) adalah seorang produser dalam perfilman Hindi. Ia memulai kariernya dengan Bombay Talkies pada 1930an, dan kemudian mendirikan Filmistan Studio bersama Rai Bahadur Chunilalis yang adalah ayah dari su...

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

Accounting of the energy flows which determine Earth's surface temperature and drive its climate This article is about energy flows at and above Earth's surface. For Earth's internal heat, see Earth's internal heat budget. Earth's energy balance and imbalance, showing where the excess energy goes: Outgoing radiation is decreasing owing to increasing greenhouse gases in the atmosphere, leading to Earth's energy imbalance of about 460 TW.[1] The percentage going into each domain of the ...

Asian Five Nations 20122012 HSBC Asian Five Nations Competizione Asian Five Nations Sport Rugby a 15 Edizione 25ª Organizzatore Asia Rugby Date dal 27 aprile 2012al 26 maggio 2012 Partecipanti 5 Formula girone unico Risultati Vincitore Giappone(20º titolo) Secondo Corea del Sud Terzo Hong Kong Promozioni Filippine (in Top 5) Thailandia (in 1ª div.) India (in 2ª div.) Qatar (in 3ª div.) Retrocessioni Kazakistan (in 1ª div.) Singapore (in 2ª div.) Cina (in 3ª div.) Pakistan (in...

 

Земская почтаУезды Алатырский Александрийский Ананьевский Ардатовский Арзамасский Аткарский Ахтырский Балашовский Бахмутский Бежецкий Белебеевский Белозерский Бердянский Бобровский Богородский Богучарский Борисоглебский Боровичский Бронницкий Бугульминский Бу�...

 

For an Indian gotra, see Oriya people. Place in Sonora, MexicoUresUresShow map of SonoraUresShow map of MexicoCoordinates: 29°25′N 110°23′W / 29.417°N 110.383°W / 29.417; -110.383CountryMexicoStateSonoraMunicipalityUresTime zoneUTC-7 (Pacific (US Mountain)) • Summer (DST)UTC-7 (No DST) Ures is a small city and a municipality in the Mexican state of Sonora. Population In the year 2000, the total population was 9,553 residents. New figures from 2005 r...

American baseball pitcher (born 1994) Baseball player Dane DunningDunning with the Birmingham Barons in 2018Texas Rangers – No. 33PitcherBorn: (1994-12-20) December 20, 1994 (age 29)Orange Park, Florida, U.S.Bats: RightThrows: RightMLB debutAugust 19, 2020, for the Chicago White SoxMLB statistics (through April 23, 2024)Win–loss record25–27Earned run average4.19Strikeouts455 Teams Chicago White Sox (2020) Texas Rangers (2021–present) Career highlights and awards Wo...

 

Questa voce sull'argomento ciclisti italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Emilio Ravasio Ravasio all'Atala-Ofmega Nazionalità  Italia Ciclismo Specialità Strada Termine carriera 1986 CarrieraSquadre di club 1985-1986 Atala   Modifica dati su Wikidata · Manuale Emilio Ravasio (Carate Brianza, 4 giugno 1962 – Palermo, 27 maggio 1986) è stato un ciclista su str...

 

The early life of Pope Benedict XVI concerns the period from his birth in 1927 through the completion of his education and ordination in 1951. Background and childhood (1927–1943) Joseph Alois Ratzinger was born on 16 April (Holy Saturday) 1927 at 11 Schulstrasse, his parents' home in Marktl am Inn, Bavaria and baptised on the same day. He was the third and youngest child of Joseph Ratzinger Sr. (1877–1959), a police officer, and his wife, Maria (née Peintner) (1884–1963), whose famil...

Australian political theorist (1930–2013) Kenneth MinogueMinogue, c. 1980sBornKenneth Robert Minogue(1930-09-11)11 September 1930Palmerston North, New ZealandDied28 June 2013(2013-06-28) (aged 82)Guayaquil, EcuadorOther namesKen MinogueSpouses Valerie Pearson Hallett ​ ​(m. 1954; div. 2001)​Beverly Cohen (died c. 2010)Academic backgroundAlma materUniversity of SydneyLondon School of EconomicsInfluencesJohn AndersonAcademi...

 

American pop band This article is about the group known for their song Angel Baby. For the Motown group active in the late 1960s and 1970s, see The Originals (band). Rosie & the OriginalsBackground informationOriginSan Diego, California, U.S.GenresR&Bpopeasy listeningdoo-wopYears active1960–1963, 1969–1973LabelsHighland RecordsBrunswick RecordsMembersJames BentleyGene RomeroJoe YanchoPast membersRosie HamlinNoah TafollaDavid PonceTony GomezCarl Von GoodatAlfred Barrett Rosie and t...