Weierstrass elliptic function

In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions are also referred to as ℘-functions and they are usually denoted by the symbol ℘, a uniquely fancy script p. They play an important role in the theory of elliptic functions, i.e., meromorphic functions that are doubly periodic. A ℘-function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice.

Symbol for Weierstrass P function

Symbol for Weierstrass -function

Model of Weierstrass -function

Motivation

A cubic of the form , where are complex numbers with , cannot be rationally parameterized.[1] Yet one still wants to find a way to parameterize it.

For the quadric ; the unit circle, there exists a (non-rational) parameterization using the sine function and its derivative the cosine function: Because of the periodicity of the sine and cosine is chosen to be the domain, so the function is bijective.

In a similar way one can get a parameterization of by means of the doubly periodic -function (see in the section "Relation to elliptic curves"). This parameterization has the domain , which is topologically equivalent to a torus.[2]

There is another analogy to the trigonometric functions. Consider the integral function It can be simplified by substituting and : That means . So the sine function is an inverse function of an integral function.[3]

Elliptic functions are the inverse functions of elliptic integrals. In particular, let: Then the extension of to the complex plane equals the -function.[4] This invertibility is used in complex analysis to provide a solution to certain nonlinear differential equations satisfying the Painlevé property, i.e., those equations that admit poles as their only movable singularities.[5]

Definition

Visualization of the -function with invariants and in which white corresponds to a pole, black to a zero.

Let be two complex numbers that are linearly independent over and let be the period lattice generated by those numbers. Then the -function is defined as follows:

This series converges locally uniformly absolutely in the complex torus .

It is common to use and in the upper half-plane as generators of the lattice. Dividing by maps the lattice isomorphically onto the lattice with . Because can be substituted for , without loss of generality we can assume , and then define .

Properties

  • is a meromorphic function with a pole of order 2 at each period in .
  • is an even function. That means for all , which can be seen in the following way:
The second last equality holds because . Since the sum converges absolutely this rearrangement does not change the limit.
  • The derivative of is given by:[6]
  • and are doubly periodic with the periods and .[6] This means: It follows that and for all .

Laurent expansion

Let . Then for the -function has the following Laurent expansion where for are so called Eisenstein series.[6]

Differential equation

Set and . Then the -function satisfies the differential equation[6] This relation can be verified by forming a linear combination of powers of and to eliminate the pole at . This yields an entire elliptic function that has to be constant by Liouville's theorem.[6]

Invariants

The real part of the invariant g3 as a function of the square of the nome q on the unit disk.
The imaginary part of the invariant g3 as a function of the square of the nome q on the unit disk.

The coefficients of the above differential equation g2 and g3 are known as the invariants. Because they depend on the lattice they can be viewed as functions in and .

The series expansion suggests that g2 and g3 are homogeneous functions of degree −4 and −6. That is[7] for .

If and are chosen in such a way that , g2 and g3 can be interpreted as functions on the upper half-plane .

Let . One has:[8] That means g2 and g3 are only scaled by doing this. Set and As functions of are so called modular forms.

The Fourier series for and are given as follows:[9] where is the divisor function and is the nome.

Modular discriminant

The real part of the discriminant as a function of the square of the nome q on the unit disk.

The modular discriminant Δ is defined as the discriminant of the characteristic polynomial of the differential equation as follows: The discriminant is a modular form of weight 12. That is, under the action of the modular group, it transforms as where with ad − bc = 1.[10]

Note that where is the Dedekind eta function.[11]

For the Fourier coefficients of , see Ramanujan tau function.

The constants e1, e2 and e3

, and are usually used to denote the values of the -function at the half-periods. They are pairwise distinct and only depend on the lattice and not on its generators.[12]

, and are the roots of the cubic polynomial and are related by the equation: Because those roots are distinct the discriminant does not vanish on the upper half plane.[13] Now we can rewrite the differential equation: That means the half-periods are zeros of .

The invariants and can be expressed in terms of these constants in the following way:[14] , and are related to the modular lambda function:

Relation to Jacobi's elliptic functions

For numerical work, it is often convenient to calculate the Weierstrass elliptic function in terms of Jacobi's elliptic functions.

The basic relations are:[15] where and are the three roots described above and where the modulus k of the Jacobi functions equals and their argument w equals

Relation to Jacobi's theta functions

The function can be represented by Jacobi's theta functions: where is the nome and is the period ratio .[16] This also provides a very rapid algorithm for computing .

Relation to elliptic curves

Consider the embedding of the cubic curve in the complex projective plane

For this cubic there exists no rational parameterization, if .[1] In this case it is also called an elliptic curve. Nevertheless there is a parameterization in homogeneous coordinates that uses the -function and its derivative :[17]

Now the map is bijective and parameterizes the elliptic curve .

is an abelian group and a topological space, equipped with the quotient topology.

It can be shown that every Weierstrass cubic is given in such a way. That is to say that for every pair with there exists a lattice , such that

and .[18]

The statement that elliptic curves over can be parameterized over , is known as the modularity theorem. This is an important theorem in number theory. It was part of Andrew Wiles' proof (1995) of Fermat's Last Theorem.

Addition theorems

Let , so that . Then one has:[19]

As well as the duplication formula:[19]

These formulas also have a geometric interpretation, if one looks at the elliptic curve together with the mapping as in the previous section.

The group structure of translates to the curve and can be geometrically interpreted there:

The sum of three pairwise different points is zero if and only if they lie on the same line in .[20]

This is equivalent to: where , and .[21]

Typography

The Weierstrass's elliptic function is usually written with a rather special, lower case script letter ℘, which was Weierstrass's own notation introduced in his lectures of 1862–1863.[footnote 1] It should not be confused with the normal mathematical script letters P, 𝒫 and 𝓅.

In computing, the letter ℘ is available as \wp in TeX. In Unicode the code point is U+2118 SCRIPT CAPITAL P (℘, ℘), with the more correct alias weierstrass elliptic function.[footnote 2] In HTML, it can be escaped as ℘.

Character information
Preview
Unicode name SCRIPT CAPITAL P / WEIERSTRASS ELLIPTIC FUNCTION
Encodings decimal hex
Unicode 8472 U+2118
UTF-8 226 132 152 E2 84 98
Numeric character reference ℘ ℘
Named character reference ℘, ℘

See also

Footnotes

  1. ^ This symbol was also used in the version of Weierstrass's lectures published by Schwarz in the 1880s. The first edition of A Course of Modern Analysis by E. T. Whittaker in 1902 also used it.[22]
  2. ^ The Unicode Consortium has acknowledged two problems with the letter's name: the letter is in fact lowercase, and it is not a "script" class letter, like U+1D4C5 𝓅 MATHEMATICAL SCRIPT SMALL P, but the letter for Weierstrass's elliptic function. Unicode added the alias as a correction.[23][24]

References

  1. ^ a b Hulek, Klaus. (2012), Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (in German) (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 8, ISBN 978-3-8348-2348-9
  2. ^ Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 259, ISBN 978-3-540-32058-6
  3. ^ Jeremy Gray (2015), Real and the complex: a history of analysis in the 19th century (in German), Cham, p. 71, ISBN 978-3-319-23715-2{{citation}}: CS1 maint: location missing publisher (link)
  4. ^ Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 294, ISBN 978-3-540-32058-6
  5. ^ Ablowitz, Mark J.; Fokas, Athanassios S. (2003). Complex Variables: Introduction and Applications. Cambridge University Press. p. 185. doi:10.1017/cbo9780511791246. ISBN 978-0-521-53429-1.
  6. ^ a b c d e Apostol, Tom M. (1976), Modular functions and Dirichlet series in number theory (in German), New York: Springer-Verlag, p. 11, ISBN 0-387-90185-X
  7. ^ Apostol, Tom M. (1976). Modular functions and Dirichlet series in number theory. New York: Springer-Verlag. p. 14. ISBN 0-387-90185-X. OCLC 2121639.
  8. ^ Apostol, Tom M. (1976), Modular functions and Dirichlet series in number theory (in German), New York: Springer-Verlag, p. 14, ISBN 0-387-90185-X
  9. ^ Apostol, Tom M. (1990). Modular functions and Dirichlet series in number theory (2nd ed.). New York: Springer-Verlag. p. 20. ISBN 0-387-97127-0. OCLC 20262861.
  10. ^ Apostol, Tom M. (1976). Modular functions and Dirichlet series in number theory. New York: Springer-Verlag. p. 50. ISBN 0-387-90185-X. OCLC 2121639.
  11. ^ Chandrasekharan, K. (Komaravolu), 1920- (1985). Elliptic functions. Berlin: Springer-Verlag. p. 122. ISBN 0-387-15295-4. OCLC 12053023.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  12. ^ Busam, Rolf (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 270, ISBN 978-3-540-32058-6
  13. ^ Apostol, Tom M. (1976), Modular functions and Dirichlet series in number theory (in German), New York: Springer-Verlag, p. 13, ISBN 0-387-90185-X
  14. ^ K. Chandrasekharan (1985), Elliptic functions (in German), Berlin: Springer-Verlag, p. 33, ISBN 0-387-15295-4
  15. ^ Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw–Hill. p. 721. LCCN 59014456.
  16. ^ Reinhardt, W. P.; Walker, P. L. (2010), "Weierstrass Elliptic and Modular Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  17. ^ Hulek, Klaus. (2012), Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (in German) (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 12, ISBN 978-3-8348-2348-9
  18. ^ Hulek, Klaus. (2012), Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (in German) (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 111, ISBN 978-3-8348-2348-9
  19. ^ a b Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 286, ISBN 978-3-540-32058-6
  20. ^ Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 287, ISBN 978-3-540-32058-6
  21. ^ Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 288, ISBN 978-3-540-32058-6
  22. ^ teika kazura (2017-08-17), The letter ℘ Name & origin?, MathOverflow, retrieved 2018-08-30
  23. ^ "Known Anomalies in Unicode Character Names". Unicode Technical Note #27. version 4. Unicode, Inc. 2017-04-10. Retrieved 2017-07-20.
  24. ^ "NameAliases-10.0.0.txt". Unicode, Inc. 2017-05-06. Retrieved 2017-07-20.

Read other articles:

Goguryeo고구려37 SM–668Goguryeo pada puncaknya pada tahun 476.Ibu kotaJolbon(37 SM-3)Gungnae(3–427)Pyongyang(427–668)Bahasa yang umum digunakanGoguryeo dan Japonik GoguryeoAgama Buddha, Taoisme, Konfusianisme, ShamanismePemerintahanMonarkiPenguasa • 37–19 BC Dongmyeong• 391–413 Gwanggaeto• 413–491 Jangsu• 590–618 Yeongyang Era SejarahKuno• Didirikan 37 SM• Pengenalan Agama Buddha 372• Kampanye Gwanggaeto 391–413•&...

 

 

This article is about the capital city of the Mexican state of Tabasco. For other uses, see Villahermosa (disambiguation). This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: New content is a mess with lots of bad refs etc, this is a machine translation from Spanish. Please help improve this article if you can. (September 2019) (Learn how and when to remove this template message) State capital in Tabasco, MexicoVillahermosaState capitalFrom top to ...

 

 

Perjanjian Waitangi Perjanjian Waitangi (Inggris: Treaty of Waitangi, bahasa Māori: Tiriti o Waitangi) merupakan perjanjian yang ditandatangani di Waitangi, Bay of Islands, Selandia Baru, pada tanggal 6 Februari 1840. Perjanjian ini mendirikan kegubernuran Inggris di Selandia Baru, dan mengakui kepemilikan Māori atas tanahnya. Oleh karena itu, tanggal 6 Februari diperingati sebagai hari raya di Selandia Baru. Meskipun demikian, teks perjanjian versi Inggris dan Māori amat berbeda, ...

Untuk surat Al-Qur'an, lihat Surah. Untuk kota di India, lihat Surat, Gujarat. Untuk kegunaan lain, lihat Surat (disambiguasi). Sastra Sastra lisan Folklor Dongeng Lagu Legenda Mitos Peribahasa Wiracarita Penampilan Buku audio Permainan panggung Pidato Genre tertulis utama Drama Pementasan Komedi Tragedi Tragikomedi Puisi Epik Lirik Prosa Cerita pendek Novel/Roman Novela Fiksi Bacaan anak Cinta Kejahatan Sejarah Spekulatif Fantasi Ilmiah Satir Nonfiksi Akademik Filsafat Sejarah Epistola Kehid...

 

 

Questa voce sull'argomento centri abitati dell'Illinois è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. DeKalbcity(EN) DeKalb, Illinois DeKalb – Veduta LocalizzazioneStato Stati Uniti Stato federato Illinois ConteaDeKalb AmministrazioneSindacoKris Povlsen TerritorioCoordinate41°55′53″N 88°45′01″W / 41.931389°N 88.750278°W41.931389; -88.750278 (DeKalb)Coordinate...

 

 

Depicting depth through varying levels of darkness This article is about shading in computer graphics. For the GPU technology that performs these techniques, see Shader. For other uses, see Shade. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Shading – news · newspapers · books · scholar · JSTOR (May 2007)...

For the French politician, see Étienne Clavière. Comune in Piedmont, ItalyClaviereComuneComune di Claviere Coat of armsLocation of Claviere ClaviereLocation of Claviere in ItalyShow map of ItalyClaviereClaviere (Piedmont)Show map of PiedmontCoordinates: 44°56′N 6°45′E / 44.933°N 6.750°E / 44.933; 6.750CountryItalyRegionPiedmontMetropolitan cityTurin (TO)Government • MayorSimona RadognaArea[1] • Total2.7 km2 (1.0 sq...

 

 

Keluarga AK-100 meliputi serangkaian senapan Kalashnikov yang berdasar pada AK-74M dan ditujukan yntuk penjualan ekspor.[1] Keluarga senapan ini menawarkan sistem AK-74M dalam berbagai selongsong peluru dan panjang.[2] Seri AK-100M/200 Keluarga senapan AK-100M/AK-200 awalnya dirancang sekitar tahun 2009 sebagai varian perbaikan dari seri dasar AK-100. Sebagian besar perbaikan berpusat pada peningkatan ergonomis dan sistem pemasangan aksesori. Pengembangan keluarga AK-100M/AK-2...

 

 

جانسون كريك     الإحداثيات 43°04′45″N 88°46′16″W / 43.0792°N 88.7711°W / 43.0792; -88.7711   [1] تقسيم إداري  البلد الولايات المتحدة[2][3]  التقسيم الأعلى مقاطعة جيفرسون  خصائص جغرافية  المساحة 7.846086 كيلومتر مربع7.83974 كيلومتر مربع (1 أبريل 2010)  ارتفاع 253 مت�...

Mesoamerican sculpture Maya chacmool from Chichen Itza, excavated by Le Plongeon in 1875, now displayed at the National Museum of Anthropology in Mexico City A chacmool (also spelled chac-mool or Chac Mool) is a form of pre-Columbian Mesoamerican sculpture depicting a reclining figure with its head facing 90 degrees from the front, supporting itself on its elbows and supporting a bowl or a disk upon its stomach. These figures possibly symbolised slain warriors carrying offerings to the gods; ...

 

 

Независимое государство(1919—1922)Союзная республика в составе СССР(1922—1991)Украинская Советская Социалистическая Республикаукр. Українська Радянська Соціалістична Республіка Флаг(1949—1991) Герб(1950—1991) Девиз: «укр. Пролетарі всіх країн, єднайтеся!»«Пролетарии всех стран, со...

 

 

County in Mississippi, United States County in MississippiBolivar CountyCountyGrover Hotel in Downtown Cleveland Historic District.Location within the U.S. state of MississippiMississippi's location within the U.S.Coordinates: 33°47′N 90°53′W / 33.79°N 90.88°W / 33.79; -90.88Country United StatesState MississippiFounded1836Named forSimón BolívarSeatRosedale and ClevelandLargest cityClevelandArea • Total906 sq mi (2,350 km2...

Protected area in Pima County, Arizona Buenos Aires National Wildlife RefugeIUCN category IV (habitat/species management area)A view in the refugeMap of ArizonaShow map of ArizonaBuenos Aires National Wildlife Refuge (the United States)Show map of the United StatesLocationPima County, Arizona, United StatesNearest cityArivaca, ArizonaCoordinates31°33′00″N 111°33′02″W / 31.5500891°N 111.550662°W / 31.5500891; -111.550662[1]Area117,107 acres (473...

 

 

River in Italy You can help expand this article with text translated from the corresponding article in Italian. (July 2012) Click [show] for important translation instructions. View a machine-translated version of the Italian article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the ...

 

 

Cet article est une ébauche concernant une compétition de football et la Bulgarie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Coupe de Bulgarie Généralités Sport Football Création 1938 Organisateur(s) BFU Périodicité Annuelle Lieu(x) Bulgarie Statut des participants Amateur et professionnel Palmarès Tenant du titre Botev Plovdiv (2024) Plus titré(s) Levski Sofia (26) modifier La Coupe de Bulgarie ...

Pour les articles homonymes, voir Estadio Nacional. Cet article est une ébauche concernant un stade de football et le Pérou. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Estadio NacionalGénéralitésSurnom Coloso de José DíazAdresse LimaConstruction et ouvertureConstruction 1951 - 1952Ouverture 27 octobre 1952Rénovation 1992, 1996, 2004, 2011Extension 2004, 2011UtilisationClubs résidents Ciclista LimaS...

 

 

Land alongside a body of water Riverbank redirects here. For other uses, see Riverbank (disambiguation). Left bank and Right bank redirect here. For other uses, see Left Bank (disambiguation) and Right Bank (disambiguation). This article is about terrain alongside a body of water. For a submerged ridge sometimes called a bank, see shoal. You can help expand this article with text translated from the corresponding article in French. (May 2024) Click [show] for important translation instru...

 

 

Soviet T-54 or Chinese Type 59 tank used in the Cambodian civil war now on display at the war museum in Siem Reap, Cambodia, 2005. The Cambodian Civil War was a military conflict that pitted the guerrilla forces of the Maoist-oriented Communist Party of Kampuchea (nicknamed the Khmer Rouge) and the armed and security forces of the Nonaligned Kingdom of Cambodia from 1967 to 1970, then between the joint Monarchist, Maoist and Marxist-Leninist National United Front of Kampuchea alliance and th...

Khedive Palace Entrance The Khedive's Palace (Turkish: Hıdiv Kasrı, Khedive Palace[1]), also known as Çubuklu Palace[2] (Çubuklu Sarayı),[2] is located on the Asian side of the Bosphorus in Istanbul, Turkey, and was once the residence of Khedive Abbas II of Egypt and Sudan. In English it is also known as the Khedive's Pavilion[3] or the Khedive's Mansion.[2] The 1,000 m2 (11,000 sq ft) palace stands on a hiltop within a large grove o...

 

 

Collection of knots which do not intersect, but may be linked Not to be confused with Linking number. The Borromean rings, a link with three components each equivalent to the unknot. In mathematical knot theory, a link is a collection of knots which do not intersect, but which may be linked (or knotted) together. A knot can be described as a link with one component. Links and knots are studied in a branch of mathematics called knot theory. Implicit in this definition is that there is a trivia...