Linear span

The cross-hatched plane is the linear span of u and v in both R2 and R3.

In mathematics, the linear span (also called the linear hull[1] or just span) of a set of elements of a vector space is the smallest linear subspace of that contains It is the set of all finite linear combinations of the elements of S,[2] and the intersection of all linear subspaces that contain It often denoted span(S)[3] or

For example, in geometry, two linearly independent vectors span a plane.

To express that a vector space V is a linear span of a subset S, one commonly uses one of the following phrases: S spans V; S is a spanning set of V; V is spanned or generated by S; S is a generator set or a generating set of V.

Spans can be generalized to many mathematical structures, in which case, the smallest substructure containing is generally called the substructure generated by

Definition

Given a vector space V over a field K, the span of a set S of vectors (not necessarily finite) is defined to be the intersection W of all subspaces of V that contain S. It is thus the smallest (for set inclusion) subspace containing W. It is referred to as the subspace spanned by S, or by the vectors in S. Conversely, S is called a spanning set of W, and we say that S spans W.

It follows from this definition that the span of S is the set of all finite linear combinations of elements (vectors) of S, and can be defined as such.[4][5][6] That is,

When S is empty, the only possibility is n = 0, and the previous expression for reduces to the empty sum.[a] The standard convention for the empty sum implies thus a property that is immediate with the other definitions. However, many introductory textbooks simply include this fact as part of the definition.

When is finite, one has

Examples

The real vector space has {(−1, 0, 0), (0, 1, 0), (0, 0, 1)} as a spanning set. This particular spanning set is also a basis. If (−1, 0, 0) were replaced by (1, 0, 0), it would also form the canonical basis of .

Another spanning set for the same space is given by {(1, 2, 3), (0, 1, 2), (−1, 12, 3), (1, 1, 1)}, but this set is not a basis, because it is linearly dependent.

The set {(1, 0, 0), (0, 1, 0), (1, 1, 0)} is not a spanning set of , since its span is the space of all vectors in whose last component is zero. That space is also spanned by the set {(1, 0, 0), (0, 1, 0)}, as (1, 1, 0) is a linear combination of (1, 0, 0) and (0, 1, 0). Thus, the spanned space is not It can be identified with by removing the third components equal to zero.

The empty set is a spanning set of {(0, 0, 0)}, since the empty set is a subset of all possible vector spaces in , and {(0, 0, 0)} is the intersection of all of these vector spaces.

The set of monomials xn, where n is a non-negative integer, spans the space of polynomials.

Theorems

Equivalence of definitions

The set of all linear combinations of a subset S of V, a vector space over K, is the smallest linear subspace of V containing S.

Proof. We first prove that span S is a subspace of V. Since S is a subset of V, we only need to prove the existence of a zero vector 0 in span S, that span S is closed under addition, and that span S is closed under scalar multiplication. Letting , it is trivial that the zero vector of V exists in span S, since . Adding together two linear combinations of S also produces a linear combination of S: , where all , and multiplying a linear combination of S by a scalar will produce another linear combination of S: . Thus span S is a subspace of V.
Suppose that W is a linear subspace of V containing S. It follows that , since every vi is a linear combination of S (trivially). Since W is closed under addition and scalar multiplication, then every linear combination must be contained in W. Thus, span S is contained in every subspace of V containing S, and the intersection of all such subspaces, or the smallest such subspace, is equal to the set of all linear combinations of S.

Size of spanning set is at least size of linearly independent set

Every spanning set S of a vector space V must contain at least as many elements as any linearly independent set of vectors from V.

Proof. Let be a spanning set and be a linearly independent set of vectors from V. We want to show that .
Since S spans V, then must also span V, and must be a linear combination of S. Thus is linearly dependent, and we can remove one vector from S that is a linear combination of the other elements. This vector cannot be any of the wi, since W is linearly independent. The resulting set is , which is a spanning set of V. We repeat this step n times, where the resulting set after the pth step is the union of and m - p vectors of S.
It is ensured until the nth step that there will always be some vi to remove out of S for every adjoint of v, and thus there are at least as many vi's as there are wi's—i.e. . To verify this, we assume by way of contradiction that . Then, at the mth step, we have the set and we can adjoin another vector . But, since is a spanning set of V, is a linear combination of . This is a contradiction, since W is linearly independent.

Spanning set can be reduced to a basis

Let V be a finite-dimensional vector space. Any set of vectors that spans V can be reduced to a basis for V, by discarding vectors if necessary (i.e. if there are linearly dependent vectors in the set). If the axiom of choice holds, this is true without the assumption that V has finite dimension. This also indicates that a basis is a minimal spanning set when V is finite-dimensional.

Generalizations

Generalizing the definition of the span of points in space, a subset X of the ground set of a matroid is called a spanning set if the rank of X equals the rank of the entire ground set[7]

The vector space definition can also be generalized to modules.[8][9] Given an R-module A and a collection of elements a1, ..., an of A, the submodule of A spanned by a1, ..., an is the sum of cyclic modules consisting of all R-linear combinations of the elements ai. As with the case of vector spaces, the submodule of A spanned by any subset of A is the intersection of all submodules containing that subset.

Closed linear span (functional analysis)

In functional analysis, a closed linear span of a set of vectors is the minimal closed set which contains the linear span of that set.

Suppose that X is a normed vector space and let E be any non-empty subset of X. The closed linear span of E, denoted by or , is the intersection of all the closed linear subspaces of X which contain E.

One mathematical formulation of this is

The closed linear span of the set of functions xn on the interval [0, 1], where n is a non-negative integer, depends on the norm used. If the L2 norm is used, then the closed linear span is the Hilbert space of square-integrable functions on the interval. But if the maximum norm is used, the closed linear span will be the space of continuous functions on the interval. In either case, the closed linear span contains functions that are not polynomials, and so are not in the linear span itself. However, the cardinality of the set of functions in the closed linear span is the cardinality of the continuum, which is the same cardinality as for the set of polynomials.

Notes

The linear span of a set is dense in the closed linear span. Moreover, as stated in the lemma below, the closed linear span is indeed the closure of the linear span.

Closed linear spans are important when dealing with closed linear subspaces (which are themselves highly important, see Riesz's lemma).

A useful lemma

Let X be a normed space and let E be any non-empty subset of X. Then

  1. is a closed linear subspace of X which contains E,
  2. , viz. is the closure of ,

(So the usual way to find the closed linear span is to find the linear span first, and then the closure of that linear span.)

See also

Footnotes

  1. ^ This is logically valid as when n = 0, the conditions for the vectors and constants are empty, and therefore vacuously satisfied.

Citations

  1. ^ Encyclopedia of Mathematics (2020). Linear Hull.
  2. ^ Axler (2015) p. 29, § 2.7
  3. ^ Axler (2015) pp. 29-30, §§ 2.5, 2.8
  4. ^ Hefferon (2020) p. 100, ch. 2, Definition 2.13
  5. ^ Axler (2015) pp. 29-30, §§ 2.5, 2.8
  6. ^ Roman (2005) pp. 41-42
  7. ^ Oxley (2011), p. 28.
  8. ^ Roman (2005) p. 96, ch. 4
  9. ^ Mac Lane & Birkhoff (1999) p. 193, ch. 6

Sources

Textbooks

  • Axler, Sheldon Jay (2015). Linear Algebra Done Right (PDF) (3rd ed.). Springer. ISBN 978-3-319-11079-0.
  • Hefferon, Jim (2020). Linear Algebra (PDF) (4th ed.). Orthogonal Publishing. ISBN 978-1-944325-11-4.
  • Mac Lane, Saunders; Birkhoff, Garrett (1999) [1988]. Algebra (3rd ed.). AMS Chelsea Publishing. ISBN 978-0821816462.
  • Oxley, James G. (2011). Matroid Theory. Oxford Graduate Texts in Mathematics. Vol. 3 (2nd ed.). Oxford University Press. ISBN 9780199202508.
  • Roman, Steven (2005). Advanced Linear Algebra (PDF) (2nd ed.). Springer. ISBN 0-387-24766-1.
  • Rynne, Brian P.; Youngson, Martin A. (2008). Linear Functional Analysis. Springer. ISBN 978-1848000049.
  • Lay, David C. (2021) Linear Algebra and Its Applications (6th Edition). Pearson.

Web

Read other articles:

1967 French filmThe ViscountDirected byMaurice ClocheWritten byJean Bruce (novel)Georges FarrelLuis MarquinaClarke ReynoldsProduced byNat WachsbergerStarringKerwin MathewsSylvia SorrenteJean YanneCinematographyHenri RaichiEdited byRaymond LeboursierAntonio Ramírez de LoaysaMusic byGeorges GarvarentzProductioncompaniesCompagnia Cinematografica MondialeCritérion FilmFranca FilmProducciones Cinematográficas D.I.A.Senior CinematograficaDistributed byLux Film (France)Italcid (Italy)Radio Films ...

 

Z

У этого термина существуют и другие значения, см. Z (значения). Символы со сходным начертанием: Ζ · Հ · Ⴭ · ⴭ · 乙 · ℤ В статье не хватает ссылок на источники (см. рекомендации по поиску). Информация должна быть проверяема, иначе она может быть удале�...

 

Cet article est une ébauche concernant l’environnement et le Rwanda. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Consultez la liste des tâches à accomplir en page de discussion. L'environnement au Rwanda est l'environnement (ensemble des éléments - biotiques ou abiotiques - qui entourent un individu ou une espèce et dont certains contribuent directement à subvenir à ses besoins) du pays Rwanda,...

  لمعانٍ أخرى، طالع جون كولير (توضيح). جون كولير (بالإنجليزية: John Collier)‏  معلومات شخصية الميلاد 27 يناير 1850(1850-01-27)لندن، بريطانيا الوفاة 11 أبريل 1934 (84 سنة)لندن، بريطانيا الجنسية بريطاني الحياة العملية المدرسة الأم أكاديمية الفنون الجميلة بميونخكلية إيتونكلية سلايد للف...

 

وول ستريتWall Street (بالإنجليزية) الشعارملصق الفيلممعلومات عامةالصنف الفني دراماتاريخ الصدور 1987مدة العرض 126 دقيقةاللغة الأصلية الإنجليزيةالبلد الولايات المتحدةالجوائز  جائزة التوتة الذهبية لأسوأ ممثلة ثانوية[1] (1988)منحت لـ داريل هانا جائزة الأوسكار لأفضل ممثل (1986)م...

 

Questa voce sugli argomenti cestisti statunitensi e allenatori di pallacanestro statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti dei progetti di riferimento 1, 2. Tarzan Cooper Nazionalità  Stati Uniti Altezza 193 cm Pallacanestro Ruolo Centro Termine carriera 1944 Hall of fame Naismith Hall of Fame (1977) Carriera Giovanili Phil. Central H.S. Squadre di club 1924-192?Philadelphia Panthers192?-1929Philadelph...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) غزو إيطاليا جزء من الحملة الإيطالية، الحرب العالمية الثانية إنزال القوات والمركبات تحت القصف خلال اجتيا...

 

2006 compilation album by MinaTi amo...Compilation album by MinaReleased16 June 2006Recordedat PDU studios in LuganoLength67 min : 16 s LabelPDUProducerMassimiliano Pani Ti amo... is a compilation album released in 2006 by the Italian singer Mina.[1] The album contains previously released songs between 1994 and 2005. The cover is inspired by the pop art artist Roy Lichtenstein.[2] Track listing No.TitleWriter(s)Length1.Fragile from Bula Bula (2005)Gennaro Parlato,...

 

† Египтопитек Реконструкция внешнего вида египтопитека Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:Четвероно...

Измаил-Бей Жанр поэма Автор Михаил Юрьевич Лермонтов Язык оригинала русский Дата написания 1832 Дата первой публикации 1843 «Измаи́л-Бей» — самая большая по объёму и самая значительная из ранних кавказских поэм М. Ю. Лермонтова. Содержание 1 История создания 2 Сюжет 3...

 

Азиатский барсук Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКласс:Мле�...

 

Rumah Sakit Umum Daerah Dr. Achmad MochtarPemerintah Provinsi Sumatera BaratGeografiLokasiJl. A. Rivai, Kayu Kubu, Guguk Panjang, Bukittinggi, Sumatera Barat, IndonesiaOrganisasiAsuransi kesehatanBPJS KesehatanPendanaanRumah sakit publikJenisRumah sakit umumPelayananStandar pelayanan (tingkat paripurna)berlaku sampai 20 Oktober 2022 [1] Ranjang pasien340 tempat tidurSejarahDibuka1908 Rumah Sakit Umum Daerah Dr. Achmad Mochtar Bukittinggi (RSUD Dr. Achmad Mochtar Bukittinggi, juga disi...

The Damnation GameAlbum studio karya Symphony XDirilis1995 (1995)[1]DirekamTrax East Recording Studio, South River, New Jersey; Studio 84, Howell Township, New JerseyGenreProgressive metal, neo-classical metalDurasi46:18LabelZeroProduserMichael Romeo, Steve Evetts, Eric RachelKronologi Symphony X Symphony X(1994)Symphony X1994 The Damnation Game (1995) The Divine Wings of Tragedy(1997)The Divine Wings of Tragedy1997 Penilaian profesional Skor ulasan Sumber Nilai AllMusic [...

 

108th edition of Major League Baseball's championship series 2012 World SeriesOfficial 2012 MLB World Series logo Team (Wins) Manager(s) Season San Francisco Giants (4) Bruce Bochy 94–68, .580, GA: 8 Detroit Tigers (0) Jim Leyland 88–74, .543, GA: 3DatesOctober 24–28VenueAT&T Park (San Francisco)Comerica Park (Detroit)MVPPablo Sandoval (San Francisco)UmpiresGerry Davis (crew chief), Dan Iassogna, Fieldin Culbreth, Brian O'Nora, Brian Gorman, Joe WestHall of FamersGiants:NoneTigers: ...

 

Ossidi di terre rare Un ossido è un composto chimico binario che si ottiene dalla reazione dell'ossigeno su di un altro elemento, così che la sua formula chimica contenga almeno un atomo di ossigeno e uno dell'altro elemento[1]. Nel XVII secolo erano compresi nelle arie, nel XVIII secolo erano conosciuti genericamente come calci, mentre si è passati al termine attuale dopo Lavoisier e la scoperta dell'ossigeno. Gli ossidi sono estremamente diffusi sulla superficie terrestre, e sono...

Orthography of the Catalan language This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article should specify the language of its non-English content, using {{lang}}, {{transliteration}} for transliterated languages, and {{IPA}} for phonetic transcriptions, with an appropriate ISO 639 code. Wikipedia's multilingual support temp...

 

EraEratema PeriodoSistema ÉpocaSerie EdadPiso Inicio, en millones de años[1]​ Mesozoico Cretácico Superior / Tardío Maastrichtiense 72,1±0,2 Campaniense 83,6±0,2 Santoniense 86,3±0,5 Coniaciense 89,8±0,3 Turoniense 93,9 Cenomaniense 100,5 Inferior / Temprano Albiense ~113,0 Aptiense ~121,4 Barremiense 125,77* Hauteriviense ~132,9 Valanginiense ~139,8 Berriasiense ~145,0 Jurásico 201,4±0,2 Triásico 251,9±0,024 *El ícono GSSP está presente en la escala, pero aún no está d...

 

Cet article est une ébauche concernant une compétition de football et le Liechtenstein. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Liechtensteiner Cup Généralités Sport Football Création 1946 Organisateur(s) Fédération du Liechtenstein Éditions 79 en 2024 Catégorie Coupe nationale Périodicité Annuelle Nations Liechtenstein Participants Clubs liechtensteinois Site web officiel www.lfv.li Palmarè...

У этого топонима есть и другие значения, см. Шези. КоммунаШезиChézy 46°36′41″ с. ш. 3°28′07″ в. д.HGЯO Страна  Франция Регион Овернь Департамент Алье Кантон Шевань Мэр Michel Borde(2008–2014) История и география Площадь 36,53 км² Высота центра 218–274 м Часовой пояс UTC+1:00, летом UTC+2:00...

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Associazione Sportiva Dilettantistica Acqui 1911. Acqui Unione SportivaStagione 1931-1932Sport calcio Squadra Acqui Prima Divisione15º posto nel girone D, retrocesso in Seconda Divisione 1932-1933 1930-1931 1932-1933 Si invita a seguire il modello di voce Questa...