Umbilical point

Lines of curvature on an ellipsoid showing umbilic points (red).

In the differential geometry of surfaces in three dimensions, umbilics or umbilical points are points on a surface that are locally spherical. At such points the normal curvatures in all directions are equal, hence, both principal curvatures are equal, and every tangent vector is a principal direction. The name "umbilic" comes from the Latin umbilicus (navel).

Umbilic points generally occur as isolated points in the elliptical region of the surface; that is, where the Gaussian curvature is positive.

Unsolved problem in mathematics:
Does every smooth topological sphere in Euclidean space have at least two umbilics?

The sphere is the only surface with non-zero curvature where every point is umbilic. A flat umbilic is an umbilic with zero Gaussian curvature. The monkey saddle is an example of a surface with a flat umbilic and on the plane every point is a flat umbilic. A closed surface topologically equivalent to a torus may or may not have zero umbilics, but every closed surface of nonzero Euler characteristic, embedded smoothly into Euclidean space, has at least one umbilic. An unproven conjecture of Constantin Carathéodory states that every smooth surface topologically equivalent to the sphere has at least two umbilics.[1]

The three main types of umbilic points are elliptical umbilics, parabolic umbilics and hyperbolic umbilics. Elliptical umbilics have the three ridge lines passing through the umbilic and hyperbolic umbilics have just one. Parabolic umbilics are a transitional case with two ridges one of which is singular. Other configurations are possible for transitional cases. These cases correspond to the D4, D5 and D4+ elementary catastrophes of René Thom's catastrophe theory.

Umbilics can also be characterised by the pattern of the principal direction vector field around the umbilic which typically form one of three configurations: star, lemon, and lemonstar (or monstar). The index of the vector field is either −½ (star) or ½ (lemon, monstar). Elliptical and parabolic umbilics always have the star pattern, whilst hyperbolic umbilics can be star, lemon, or monstar. This classification was first due to Darboux and the names come from Hannay.[2]

For surfaces with genus 0 with isolated umbilics, e.g. an ellipsoid, the index of the principal direction vector field must be 2 by the Poincaré–Hopf theorem. Generic genus 0 surfaces have at least four umbilics of index ½. An ellipsoid of revolution has two non-generic umbilics each of which has index 1.[3]

Classification of umbilics

Cubic forms

The classification of umbilics is closely linked to the classification of real cubic forms . A cubic form will have a number of root lines such that the cubic form is zero for all real . There are a number of possibilities including:

  • Three distinct lines: an elliptical cubic form, standard model .
  • Three lines, two of which are coincident: a parabolic cubic form, standard model .
  • A single real line: a hyperbolic cubic form, standard model .
  • Three coincident lines, standard model .[4]

The equivalence classes of such cubics under uniform scaling form a three-dimensional real projective space and the subset of parabolic forms define a surface – called the umbilic bracelet by Christopher Zeeman.[4] Taking equivalence classes under rotation of the coordinate system removes one further parameter and a cubic forms can be represent by the complex cubic form with a single complex parameter . Parabolic forms occur when , the inner deltoid, elliptical forms are inside the deltoid and hyperbolic one outside. If and is not a cube root of unity then the cubic form is a right-angled cubic form which play a special role for umbilics. If then two of the root lines are orthogonal.[5]

A second cubic form, the Jacobian is formed by taking the Jacobian determinant of the vector valued function , . Up to a constant multiple this is the cubic form . Using complex numbers the Jacobian is a parabolic cubic form when , the outer deltoid in the classification diagram.[5]

Umbilic classification

Umbilic classification, the —plane. The Inner deltoid give parabolic umbilics, separates elliptical and hyperbolic umbilics. Cusps on inner deltoid: cubic umbilics. Outer circle, the birth of umbilics separates star and monstar configurations. Outer deltoid, separates monstar and lemon configuration. Diagonals and the horizontal line - symmetrical umbilics with mirror symmetry.

Any surface with an isolated umbilic point at the origin can be expressed as a Monge form parameterisation , where is the unique principal curvature. The type of umbilic is classified by the cubic form from the cubic part and corresponding Jacobian cubic form. Whilst principal directions are not uniquely defined at an umbilic the limits of the principal directions when following a ridge on the surface can be found and these correspond to the root-lines of the cubic form. The pattern of lines of curvature is determined by the Jacobian.[5]

The classification of umbilic points is as follows:[5]

  • Inside inner deltoid - elliptical umbilics
    • On inner circle - two ridge lines tangent
  • On inner deltoid - parabolic umbilics
  • Outside inner deltoid - hyperbolic umbilics
    • Inside outer circle - star pattern
    • On outer circle - birth of umbilics
    • Between outer circle and outer deltoid - monstar pattern
    • Outside outer deltoid - lemon pattern
  • Cusps of the inner deltoid - cubic (symbolic) umbilics
  • On the diagonals and the horizontal line - symmetrical umbilics with mirror symmetry

In a generic family of surfaces umbilics can be created, or destroyed, in pairs: the birth of umbilics transition. Both umbilics will be hyperbolic, one with a star pattern and one with a monstar pattern. The outer circle in the diagram, a right angle cubic form, gives these transitional cases. Symbolic umbilics are a special case of this.[5]

Focal surface

A surface with an elliptical umbilic, and its focal surface.
A surface with a hyperbolic umbilic and its focal surface.

The elliptical umbilics and hyperbolic umbilics have distinctly different focal surfaces. A ridge on the surface corresponds to a cuspidal edges so each sheet of the elliptical focal surface will have three cuspidal edges which come together at the umbilic focus and then switch to the other sheet. For a hyperbolic umbilic there is a single cuspidal edge which switch from one sheet to the other.[5]

Definition in higher dimension in Riemannian manifolds

A point p in a Riemannian submanifold is umbilical if, at p, the (vector-valued) Second fundamental form is some normal vector tensor the induced metric (First fundamental form). Equivalently, for all vectors UV at p, II(UV) = gp(UV), where is the mean curvature vector at p.

A submanifold is said to be umbilic (or all-umbilic) if this condition holds at every point "p". This is equivalent to saying that the submanifold can be made totally geodesic by an appropriate conformal change of the metric of the surrounding ("ambient") manifold. For example, a surface in Euclidean space is umbilic if and only if it is a piece of a sphere.

See also

  • umbilical – an anatomical term meaning of, or relating to the navel

References

  1. ^ Berger, Marcel (2010), "The Caradéodory conjecture", Geometry revealed, Springer, Heidelberg, pp. 389–390, doi:10.1007/978-3-540-70997-8, ISBN 978-3-540-70996-1, MR 2724440.
  2. ^ Berry, M V; Hannay, J H (1977). "Umbilic points on Gaussian random surfaces". J. Phys. A. 10 (11): 1809–21. Bibcode:1977JPhA...10.1809B. doi:10.1088/0305-4470/10/11/009.
  3. ^ Porteous, p 208
  4. ^ a b Poston, Tim; Stewart, Ian (1978), Catastrophe Theory and its Applications, Pitman, ISBN 0-273-01029-8
  5. ^ a b c d e f Porteous, Ian R. (2001), Geometric Differentiation, Cambridge University Press, pp. 198–213, ISBN 0-521-00264-8

Read other articles:

  لمعانٍ أخرى، طالع ألطاف حسين (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (فبراير 2019) ألطاف حسين (بالبنغالية: সৈয়দ আলতাফ হোসেন)‏  معلومات شخصية تاريخ الميلاد سنة 1943  تاريخ الوفاة 27 فبر�...

No debe confundirse con el número 8, la ligadura & o el símbolo ∞. En el alfabeto griego, la ligadura Ȣ de omicrón e ípsilon fue usada frecuentemente en los manuscritos bizantinos. Hoy en día, la ligadura se usa también en el alfabeto latino para la ortografía del idioma wyandot y de las lenguas algonquianas, esta vez como ligadura de las letras latinas o y u. Una ligadura similar se usó en alfabeto cirílico, para O y Y. Hoy está obsoleta. Codificación computacional En Unico...

Yang Diberkati Gabriele Allegra, O.F.M.Sarjana AlkitabLahirGiovanni Stefano Allegra26 Desember 1907San Giovanni la Punta, Catania, ItaliaMeninggal26 Januari 1976Hong Kong Britania, Kekaisaran BritaniaDihormati diGereja Katolik Roma(Ordo Bruder Minor)Beatifikasi29 September 2012, Catania, Sisilia, Italia, oleh Kardinal Angelo Amato, S.D.B., mewakili Paus Benediktus XVIPesta26 Januari Yang Diberkati Gabriele Allegra, O.F.M., adalah seorang bruder Fransiskan dan sarjana Alkitab. Ia paling dikena...

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Accounting period UK taxation – news · newspapers · books · scholar · JSTOR (July 2009) (Learn how and when to remove this template message) Part of a series onAccounting Historical costConstant purchasing powerManagementTax Major typesAuditBudgetCostForensicFinancialFundGovernmentalManagementSocialTa...

«Think About the Way» Sencillo de Ice MCdel álbum Ice'n'GreenIdioma InglésPublicación 18 de marzo de 1994Formato Casete y CD-ROMGrabación Noviembre de 1993Género(s) EurodanceDuración 4:21 minDiscográfica Polydor RecordsAutor(es) Roberto ZanettiSencillos de Ice MC «Take Away the Colour» (1993 y 1993) «Think About the Way» (1994) «It's a Rainy Day» (1994) Videoclip «Think About the Way» en YouTube. [editar datos en Wikidata] «Think About the Way» (en español: Piens...

Юліус Пайєр (зліва) з Карлом Вейпрехтом (праворуч) на обкладинці газети Illustrierter Wiener Extrablatt 25 вересня 1874 р. Австро-Угорська полярна експедиція (також експедиція Пайєра-Вейпрехта) — арктична експедиція, здійснена у 1872—1874 роках під керівництвом Карла Вейпрехта та Юліуса

Family of personal computers released by Apple Computer This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Power Macintosh – news · newspapers · books · scholar · JSTOR (November 2022) (Learn how and when to remove this template message) The Power Mac G5, the last model of the series. The Power Macintosh, later...

Пам’ятка знаходиться по вул. Прохідна житлового масиву Інгулецького гірничозбагачувального комбінату в Інгулецькому районі м. Кривий Ріг. Передісторія Пам’ятка пов’язана з подіями Другої світової війни. 22 лютого 1944 р. частини 88-ї гвардійської стрілецької дивізії 8-ї гв

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Social effects of Hurricane Katrina – news · newspapers · books · scholar · JSTOR (October 2014) (Learn how and when to remove this template message) Hurricane Katrina had many social effects, due the significant loss and disruption of lives it caused. The numb...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: この愛の物語 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2015年1月) この愛の物語監督 舛田利雄脚本 つかこうへ...

The Ice Sheet at Ogden hosted the curling events for the 2002 Winter Olympics in Salt Lake City. For the Winter Olympics, there are eleven venues that have been or will be used for curling. Games Venue Other sports hosted at venue for those games Capacity Ref. 1924 Chamonix Stade Olympique de Chamonix Cross-country skiing, Figure skating, Ice hockey, Military patrol, Nordic combined (cross-country skiing), Speed skating 45,000 [1] 1988 Calgary Max Bell Arena (demonstration) Short trac...

1952 film One Fiancée at a TimeDirected bySchamyl BaumanWritten byGösta StevensProduced byArthur SpjuthStarringSickan Carlsson Karl-Arne Holmsten Edvin AdolphsonCinematographyHilding BladhEdited byLennart WallénMusic byUlf Peder OlrogProductioncompanyBauman-ProduktionDistributed bySandrew-BaumanfilmRelease date5 May 1952Running time104 minutesCountrySwedenLanguageSwedish One Fiancée at a Time (Swedish: En fästman i taget) is a 1952 Swedish comedy film directed by Schamyl Bauman and starr...

No debe confundirse con el marquesado de Santo Domingo de Guzmán. Marquesado de Santo Domingo Corona marquesalPrimer titular Juan Maroto y Polo.Concesión Alfonso XIII de España.30 de marzo de 1891 por real decreto.11 de julio de 1891 por real despacho.Actual titular Vacante[editar datos en Wikidata] El marquesado de Santo Domingo es un título nobiliario español creado por la reina regente María Cristina de Habsburgo Lorena y concedido, en nombre del rey Alfonso XIII, a Juan Ma...

1925 American silent horror film The Phantom of the OperaTheatrical release posterDirected by Rupert Julian Uncredited: Lon Chaney Ernst Laemmle Edward Sedgwick Screenplay by Uncredited: Walter Anthony Elliott J. Clawson Bernard McConville Frank M. McCormack Tom Reed Raymond L. Schrock Jasper Spearing Richard Wallace Based onThe Phantom of the Opera1910 novelby Gaston LerouxProduced by Carl Laemmle Starring Lon Chaney Norman Kerry Mary Philbin Arthur Edmund Carewe Gibson Gowland Snitz Edwards...

This is a list of bridges and tunnels on the National Register of Historic Places in the U.S. state of Missouri.[1] Name Image Built Listed Location County Type Arrow Rock State Historic Site Bridge ca. 1937 1985-03-04 Arrow Rock39°4′6″N 92°56′39″W / 39.06833°N 92.94417°W / 39.06833; -92.94417 (Arrow Rock State Historic Site Bridge) Saline Barretts Tunnels 1851, 1853 1978-12-08 Kirkwood38°34′21″N 90°27′18″W / 3...

Indian medical council and statutory body This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (September 2018) Delhi Medical CouncilAbbreviationDMCFormation1998HeadquartersNew DelhiLeaderDr. Arun Gupta, PresidentAffiliationsDepartment of Health and Family Welfare (GNCTD)WebsiteDelhi Medical Council The Delhi Medical Council (DMC) is a State Medical Council and statutory body enacted unde...

2015 film by Francis Lawrence The Hunger Games: Mockingjay – Part 2Theatrical release posterDirected byFrancis LawrenceScreenplay by Peter Craig Danny Strong Adaptation bySuzanne Collins Based onMockingjayby Suzanne CollinsProduced by Nina Jacobson Jon Kilik Starring Jennifer Lawrence Josh Hutcherson Liam Hemsworth Woody Harrelson Elizabeth Banks Julianne Moore Philip Seymour Hoffman Jeffrey Wright Stanley Tucci Donald Sutherland CinematographyJo WillemsEdited by Alan Edward Bell Mark Yoshi...

Main wing The jettied building Middleton Hall (grid reference SP193982) is a Grade II* listed building dating back to medieval times. It is situated in the North Warwickshire district of the county of Warwickshire in England, south of Fazeley and Tamworth and on the opposite side of the A4091 road to Middleton village.[1] The Manor of Middleton was held by the Freville family until 1418 and came to the Willoughbys by virtue of the marriage of the heiress Margaret de Freville to Sir Hu...

Borough in Pennsylvania, United StatesHoustonBoroughPike Street north of downtownLocation of Houston in Washington County, Pennsylvania.HoustonLocation of Houston in PennsylvaniaCoordinates: 40°14′59″N 80°12′37″W / 40.24972°N 80.21028°W / 40.24972; -80.21028CountryUnited StatesStatePennsylvaniaCountyWashingtonEstablished1901Government • MayorJames R Stubenbort, JrArea[1] • Total0.41 sq mi (1.06 km2) •...

Japanese manga series Alien NineNorth American cover of Alien Nine volume 1エイリアン9(Eirian Nain)GenreScience fiction[1] MangaWritten byHitoshi TomizawaPublished byAkita ShotenEnglish publisherUS: CPM PressMagazineYoung ChampionDemographicSeinenOriginal run9 June 1998 – 24 August 1999Volumes3 (List of volumes) Original video animationDirected byJiro Fujimoto (epi. 1)Yasuhiro Irie (epi. 2–4)Written bySadayuki MuraiMusic byKuniaki HaishimaStudioJ.C.St...