Young–Laplace equation

In physics, the Young–Laplace equation (/ləˈplɑːs/) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin. The Young–Laplace equation relates the pressure difference to the shape of the surface or wall and it is fundamentally important in the study of static capillary surfaces. It is a statement of normal stress balance for static fluids meeting at an interface, where the interface is treated as a surface (zero thickness): where is the Laplace pressure, the pressure difference across the fluid interface (the exterior pressure minus the interior pressure), is the surface tension (or wall tension), is the unit normal pointing out of the surface, is the mean curvature, and and are the principal radii of curvature. Note that only normal stress is considered, because a static interface is possible only in the absence of tangential stress.[1]

The equation is named after Thomas Young, who developed the qualitative theory of surface tension in 1805, and Pierre-Simon Laplace who completed the mathematical description in the following year. It is sometimes also called the Young–Laplace–Gauss equation, as Carl Friedrich Gauss unified the work of Young and Laplace in 1830, deriving both the differential equation and boundary conditions using Johann Bernoulli's virtual work principles.[2]

Soap films

If the pressure difference is zero, as in a soap film without gravity, the interface will assume the shape of a minimal surface.

Emulsions

The equation also explains the energy required to create an emulsion. To form the small, highly curved droplets of an emulsion, extra energy is required to overcome the large pressure that results from their small radius.

The Laplace pressure, which is greater for smaller droplets, causes the diffusion of molecules out of the smallest droplets in an emulsion and drives emulsion coarsening via Ostwald ripening.[citation needed]

Capillary pressure in a tube

Spherical meniscus with wetting angle less than 90°

In a sufficiently narrow (i.e., low Bond number) tube of circular cross-section (radius a), the interface between two fluids forms a meniscus that is a portion of the surface of a sphere with radius R. The pressure jump across this surface is related to the radius and the surface tension γ by

This may be shown by writing the Young–Laplace equation in spherical form with a contact angle boundary condition and also a prescribed height boundary condition at, say, the bottom of the meniscus. The solution is a portion of a sphere, and the solution will exist only for the pressure difference shown above. This is significant because there isn't another equation or law to specify the pressure difference; existence of solution for one specific value of the pressure difference prescribes it.

The radius of the sphere will be a function only of the contact angle, θ, which in turn depends on the exact properties of the fluids and the container material with which the fluids in question are contacting/interfacing:

so that the pressure difference may be written as:

Illustration of capillary rise. Red=contact angle less than 90°; blue=contact angle greater than 90°

In order to maintain hydrostatic equilibrium, the induced capillary pressure is balanced by a change in height, h, which can be positive or negative, depending on whether the wetting angle is less than or greater than 90°. For a fluid of density ρ: where g is the gravitational acceleration. This is sometimes known as the Jurin's law or Jurin height[3] after James Jurin who studied the effect in 1718.[4]

For a water-filled glass tube in air at sea level:

  • γ = 0.0728 J/m2 at 20 °C
  • θ = 20° (0.35 rad)
  • ρ = 1000 kg/m3
  • g = 9.8 m/s2

and so the height of the water column is given by: Thus for a 2 mm wide (1 mm radius) tube, the water would rise 14 mm. However, for a capillary tube with radius 0.1 mm, the water would rise 14 cm (about 6 inches).

Capillary action in general

In the general case, for a free surface and where there is an applied "over-pressure", Δp, at the interface in equilibrium, there is a balance between the applied pressure, the hydrostatic pressure and the effects of surface tension. The Young–Laplace equation becomes:

The equation can be non-dimensionalised in terms of its characteristic length-scale, the capillary length: and characteristic pressure

For clean water at standard temperature and pressure, the capillary length is ~2 mm.

The non-dimensional equation then becomes:

Thus, the surface shape is determined by only one parameter, the over pressure of the fluid, Δp* and the scale of the surface is given by the capillary length. The solution of the equation requires an initial condition for position, and the gradient of the surface at the start point.

A pendant drop is produced for an over pressure of Δp*=3 and initial condition r0=10−4, z0=0, dz/dr=0
A liquid bridge is produced for an over pressure of Δp*=3.5 and initial condition r0=0.25−4, z0=0, dz/dr=0

Axisymmetric equations

The (nondimensional) shape, r(z) of an axisymmetric surface can be found by substituting general expressions for principal curvatures to give the hydrostatic Young–Laplace equations:[5]

Application in medicine

In medicine it is often referred to as the Law of Laplace, used in the context of cardiovascular physiology,[6] and also respiratory physiology, though the latter use is often erroneous.[7]

History

Francis Hauksbee performed some of the earliest observations and experiments in 1709[8] and these were repeated in 1718 by James Jurin who observed that the height of fluid in a capillary column was a function only of the cross-sectional area at the surface, not of any other dimensions of the column.[4][9]

Thomas Young laid the foundations of the equation in his 1804 paper An Essay on the Cohesion of Fluids[10] where he set out in descriptive terms the principles governing contact between fluids (along with many other aspects of fluid behaviour). Pierre Simon Laplace followed this up in Mécanique Céleste[11] with the formal mathematical description given above, which reproduced in symbolic terms the relationship described earlier by Young.

Laplace accepted the idea propounded by Hauksbee in his book Physico-mechanical Experiments (1709), that the phenomenon was due to a force of attraction that was insensible at sensible distances.[12][13] The part which deals with the action of a solid on a liquid and the mutual action of two liquids was not worked out thoroughly, but ultimately was completed by Carl Friedrich Gauss.[14] Franz Ernst Neumann (1798-1895) later filled in a few details.[15][9][16]

References

  1. ^ Surface Tension Module Archived 2007-10-27 at the Wayback Machine, by John W. M. Bush, at MIT OCW.
  2. ^ Robert Finn (1999). "Capillary Surface Interfaces" (PDF). AMS.
  3. ^ "Jurin rule". McGraw-Hill Dictionary of Scientific and Technical Terms. McGraw-Hill on Answers.com. 2003. Retrieved 2007-09-05.
  4. ^ a b See:
  5. ^ Lamb, H. Statics, Including Hydrostatics and the Elements of the Theory of Elasticity, 3rd ed. Cambridge, England: Cambridge University Press, 1928.
  6. ^ Basford, Jeffrey R. (2002). "The Law of Laplace and its relevance to contemporary medicine and rehabilitation". Archives of Physical Medicine and Rehabilitation. 83 (8): 1165–1170. doi:10.1053/apmr.2002.33985. PMID 12161841.
  7. ^ Prange, Henry D. (2003). "Laplace's Law and the Alveolus: A Misconception of Anatomy and a Misapplication of Physics". Advances in Physiology Education. 27 (1): 34–40. doi:10.1152/advan.00024.2002. PMID 12594072. S2CID 7791096.
  8. ^ See:
  9. ^ a b Maxwell, James Clerk; Strutt, John William (1911). "Capillary Action" . Encyclopædia Britannica. Vol. 5 (11th ed.). pp. 256–275.
  10. ^ Thomas Young (1805) "An essay on the cohesion of fluids," Philosophical Transactions of the Royal Society of London, 95 : 65–87.
  11. ^ Pierre Simon marquis de Laplace, Traité de Mécanique Céleste, volume 4, (Paris, France: Courcier, 1805), Supplément au dixième livre du Traité de Mécanique Céleste, pages 1–79.
  12. ^ Pierre Simon marquis de Laplace, Traité de Mécanique Céleste, volume 4, (Paris, France: Courcier, 1805), Supplément au dixième livre du Traité de Mécanique Céleste. On page 2 of the Supplément, Laplace states that capillary action is due to "… les lois dans lesquelles l'attraction n'est sensible qu'à des distances insensibles; …" (… the laws in which attraction is sensible [significant] only at insensible [infinitesimal] distances …).
  13. ^ In 1751, Johann Andreas Segner came to the same conclusion that Hauksbee had reached in 1709: J. A. von Segner (1751) "De figuris superficierum fluidarum" (On the shapes of liquid surfaces), Commentarii Societatis Regiae Scientiarum Gottingensis (Memoirs of the Royal Scientific Society at Göttingen), 1 : 301–372. On page 303, Segner proposes that liquids are held together by an attractive force (vim attractricem) that acts over such short distances "that no one could yet have perceived it with their senses" (… ut nullo adhuc sensu percipi poterit.).
  14. ^ Carl Friedrich Gauss, Principia generalia Theoriae Figurae Fluidorum in statu Aequilibrii [General principles of the theory of fluid shapes in a state of equilibrium] (Göttingen, (Germany): Dieterichs, 1830). Available on-line at: Hathi Trust.
  15. ^ Franz Neumann with A. Wangerin, ed., Vorlesungen über die Theorie der Capillarität [Lectures on the theory of capillarity] (Leipzig, Germany: B. G. Teubner, 1894).
  16. ^ Rouse Ball, W. W. [1908] (2003) "Pierre Simon Laplace (1749–1827)", in A Short Account of the History of Mathematics, 4th ed., Dover, ISBN 0-486-20630-0

Further reading

Read other articles:

Wakil Presiden AS Mike Pence dengan para anggota tim SWAT Broward County, Florida pada 30 November 2018; pria di kiri gambar mengenakan simbol Q berwarna merah-hitam, simbol dari QAnon. QAnon (/kjuːəˈnɒn/) adalah sebuah teori konspirasi sayap kanan jauh[6] yang menyatakan bahwa terdapat rencana rahasia yang dilakukan oleh negara rahasia terhadap Presiden AS Donald Trump dan para pendukungnya.[7] Teori tersebut dimulai dengan sebuah pos Oktober 2017 pada papan gambar 4chan ...

 

 

Atsuko Maeda前田敦子Atsuko Maeda pada tahun 2016.LahirMaeda Atsuko (前田敦子code: ja is deprecated )10 Juli 1991 (umur 32)Ichikawa, Prefektur ChibaKebangsaanJepangNama lainAcchanPekerjaanArtisidolapenyanyiAnggota AKB48 (2005-2012)Dikenal atasPeringkat 1 (Center) — Pemilihan Member Single ke-13 AKB48 (2009)Peringkat 2 (Senbatsu) — Pemilihan Member Single ke-17 AKB48 (2010)Peringkat 1 (Center) — Pemilihan Member Single ke-22 AKB48 (2011)Kota asalIchikawa, Prefektur...

 

 

Island in the Bailiwick of Guernsey in the Channel Islands This article is about the Channel Island called Herm. For other uses, see Herm (disambiguation). Place in United KingdomHermHaerme (Guernésiais)Part of Guernsey, Bailiwick of Guernsey FlagCoat of armsAnthem: Sarnia Cherie  (Guernsey)Sovereign stateUnited Kingdom[a]Crown DependencyGuernseyParishSaint Peter PortOfficial languagesEnglishGuernésiaisFrenchGovernmentParliamentary constitutional monarchy• Duke Char...

Mariusz Lewandowski Informasi pribadiNama lengkap Mariusz LewandowskiTanggal lahir 18 Mei 1979 (umur 44)Tempat lahir Legnica, PolandiaTinggi 1,84 m (6 ft 1⁄2 in)Posisi bermain GelandangInformasi klubKlub saat ini PFC SevastopolNomor 18Karier junior Zagłębie LubinKarier senior*Tahun Tim Tampil (Gol)1996–1999 Zagłębie Lubin 36 (0)2000–2001 Dyskobolia Grodzisk 40 (2)2001–2010 Shakhtar Donetsk 174 (21)2010– Sevastopol 25 (6)Tim nasional‡2002– Polandia 65...

 

 

Italian footballer Raffaele Pucino Personal informationDate of birth (1991-05-03) 3 May 1991 (age 32)Place of birth Caserta, ItalyHeight 1.83 m (6 ft 0 in)Position(s) Right back, centre backTeam informationCurrent team BariNumber 25Youth career Boys Caserta Napoli Empoli Casertana Atletico NolaSenior career*Years Team Apps (Gls)2009–2011 Alessandria 44 (0)2011–2013 Varese 69 (3)2013–2014 Sassuolo 3 (0)2014–2017 Chievo 0 (0)2014–2015 → Pescara (loan) 36 (0)2015�...

 

 

Edition of the NBA Finals 2023 NBA Finals TeamCoachWins Denver Nuggets Michael Malone 4 Miami Heat Erik Spoelstra 1 DatesJune 1–12MVPNikola Jokić (Denver Nuggets)Eastern FinalsHeat defeated Celtics, 4–3Western FinalsNuggets defeated Lakers, 4–0 ← 2022 NBA Finals 2024 → The 2023 NBA Finals was the championship series of the National Basketball Association (NBA)'s 2022–23 season and conclusion to the season's playoffs. The best-of-seven playoffs was played between...

River in Wales which flows into Cardiff Bay Not to be confused with River Taf. River TaffThe Taff flowing through LlandaffNative nameAfon Taf (Welsh)LocationCountryWalesHistoric countyGlamorganUnitary AuthorityMerthyr Tydfil, Rhondda Cynon Taf, CardiffSettlementsMerthyr Tydfil, Treharris, Pontypridd, CardiffPhysical characteristicsSource  • locationCefn-coed-y-cymmer, Merthyr Tydfil, Wales Length67 km (42 mi)[1]Discharge  • ...

 

 

坐标:43°11′38″N 71°34′21″W / 43.1938516°N 71.5723953°W / 43.1938516; -71.5723953 此條目需要补充更多来源。 (2017年5月21日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:新罕布什尔州 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源...

 

 

Version of the Type 205 submarine For the older submarine called Kobben (1909–1926), see HNoMS Kobben (1909). Kobben-class profile HNoMs Utstein, now a museum ship Class overview BuildersNordseewerke GmbH Operators  Royal Norwegian Navy  Royal Danish Navy  Polish Navy Succeeded byUla class SubclassesTumleren class Built1963–1966 In commission1964–2021 Completed15 Active0 Laid up3 Preserved5 (2 in Poland, 2 in Denmark, 1 in Norway) General characteristics TypeCoastal ...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2015) هجمات 19 مارس 2013 في العراق كانت سلسلة من التفجيرات المنسقة وعمليات إطلاق النار في العاصمة بغداد وعدد من المدن الكبرى في الشمال والمناطق الوسطى من البلاد. قتل...

 

 

نسبة التحضر عالميًا في 2015. يشير التَمَدُّنُ أو التحضر إلى التحول السكاني من المناطق الريفية إلى الحضرية، والزيادة التدريجية في نسبة السكان القاطنين في المناطق الحضرية، والوسائل التي يتكيف بها كل مجتمع مع هذا التغيير.[1] وهي العملية التي يغلب عليها طابع تشكيل المدن وال�...

 

 

Mobile food stand selling hot dogs A hot dog cart in New York City Part of a series onAmerican cuisine Regional cuisines Northeastern New England New Jersey New York City Philadelphia Midwestern Chicago Michigan North Dakota Ohio Omaha St. Louis Wisconsin Mid-Atlantic Baltimore Pittsburgh Southern (list) Atlanta Cajun Floribbean Kentucky Louisiana Creole Lowcountry Houston New Orleans Texas Tex-Mex Western California California fusion Los Angeles Pacific Northwest Rocky Mountain Southwestern ...

Unit of power with different values For other uses, see Horsepower (disambiguation). HorsepowerOne imperial horsepower lifts 550 pounds (250 kg) by 1 foot (30 cm) in 1 second.General informationUnit ofpowerSymbolhp Horsepower (hp) is a unit of measurement of power, or the rate at which work is done, usually in reference to the output of engines or motors. There are many different standards and types of horsepower. Two common definitions used today are the imperial horsepow...

 

 

USNS Waccamaw (T-AO-109) Ships of the United States NavyShips in current service Current ships Ships grouped alphabetically A–B C D–F G–H I–K L M N–O P Q–R S T–V W–Z Ships grouped by type Aircraft carriers Airships Amphibious warfare ships Auxiliaries Battlecruisers Battleships Cruisers Destroyers Destroyer escorts Destroyer leaders Escort carriers Frigates Hospital ships Littoral combat ships Mine warfare vessels Monitors Oilers Patrol vessels Registered civilian vessels Sai...

 

 

Historic church in South Dakota, United States United States historic placeChurch of the Immaculate ConceptionU.S. National Register of Historic Places The church in 2017Show map of South DakotaShow map of the United StatesLocation918 5th St.Rapid City, South DakotaCoordinates44°4′33″N 103°13′31″W / 44.07583°N 103.22528°W / 44.07583; -103.22528Area1 acre (0.40 ha)Built1902 (1902)Architectural styleRomanesqueNRHP reference No.7500172...

دراسات المجتمعصنف فرعي من علوم اجتماعية جزء من urban sociology and community studies (en) تعديل - تعديل مصدري - تعديل ويكي بيانات دراسات المجتمع هي مجال أكاديمي يستند إلى علم الاجتماع وعلم الإنسان ومناهج البحث الاجتماعي لوصف الأعراق البشرية وملاحظة المشارك في دراسة المجتمع. في البيئات الأكا�...

 

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مارس 2023) فرانك كوفاكس معلومات شخصية الميلاد 4 ديسمبر 1919(1919-12-04)أوكلاند الوفاة فبراير 1990 (70&...

 

 

Gianfranco Ganau Presidente del Consiglio regionale della SardegnaDurata mandato20 marzo 2014 –9 aprile 2019 PredecessoreClaudia Lombardo SuccessoreMichele Pais Sindaco di SassariDurata mandato9 maggio 2005 –28 marzo 2014 PredecessoreNanni Campus SuccessoreGuido Sechi(commissario straordinario) Dati generaliPartito politicoPartito Democratico (dal 2007)In precedenza:PDS (1991-1998)DS (1998-2007) Titolo di studioLaurea in medicina e chirurgia Univ...

城市故事City Japes类型處境喜劇主演溫兆倫、曾近榮、丁 茵、何美婷、梁思浩、郭晉安、羅嘉良、劉淑華、唐麗球、何偉龍、彭健新、吳茜薇集数455主题曲Plucky Fella [1]作曲David Snell制作拍摄/制作年份1986年-1988年制作统筹黃 令、郭靜霞监制梁材遠编审岑國榮、韋家輝、余詠珊、鄧特希拍攝地點 英屬香港制作公司香港電視廣播有限公司無綫電視翡翠台首播 播出日�...

 

 

Koko Prasetyo DarkuncoroInformasi pribadiLahirOctober 2, 1981 (1981-10-02) (usia 42)Jakarta, Indonesia Rekor medali Voli pantai putra Mewakili  Indonesia Pesta Olahraga Asia 2002 Busan Pantai putra Pesta Olahraga Pantai Asia 2008 Bali Pantai putra 2012 Haiyang Pantai putra 2014 Phuket Pantai putra Kejuaraan Asia 2005 Songkhla Pantai putra 2006 Pulau Kish Pantai putra 2007 Songkhla Pantai putra 2008 Hyderabad Pantai putra 2010 Haikou Pantai putra 2012 Haikou Pantai putra Pesta Olahra...