Principal curvature

Saddle surface with normal planes in directions of principal curvatures

In differential geometry, the two principal curvatures at a given point of a surface are the maximum and minimum values of the curvature as expressed by the eigenvalues of the shape operator at that point. They measure how the surface bends by different amounts in different directions at that point.

Discussion

At each point p of a differentiable surface in 3-dimensional Euclidean space one may choose a unit normal vector. A normal plane at p is one that contains the normal vector, and will therefore also contain a unique direction tangent to the surface and cut the surface in a plane curve, called normal section. This curve will in general have different curvatures for different normal planes at p. The principal curvatures at p, denoted k1 and k2, are the maximum and minimum values of this curvature.

Here the curvature of a curve is by definition the reciprocal of the radius of the osculating circle. The curvature is taken to be positive if the curve turns in the same direction as the surface's chosen normal, and otherwise negative. The directions in the normal plane where the curvature takes its maximum and minimum values are always perpendicular, if k1 does not equal k2, a result of Euler (1760), and are called principal directions. From a modern perspective, this theorem follows from the spectral theorem because these directions are as the principal axes of a symmetric tensor—the second fundamental form. A systematic analysis of the principal curvatures and principal directions was undertaken by Gaston Darboux, using Darboux frames.

The product k1k2 of the two principal curvatures is the Gaussian curvature, K, and the average (k1 + k2)/2 is the mean curvature, H.

If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every point.

Formal definition

Let M be a surface in Euclidean space with second fundamental form . Fix a point pM, and an orthonormal basis X1, X2 of tangent vectors at p. Then the principal curvatures are the eigenvalues of the symmetric matrix

If X1 and X2 are selected so that the matrix is a diagonal matrix, then they are called the principal directions. If the surface is oriented, then one often requires that the pair (X1, X2) be positively oriented with respect to the given orientation.

Without reference to a particular orthonormal basis, the principal curvatures are the eigenvalues of the shape operator, and the principal directions are its eigenvectors.

Generalizations

For hypersurfaces in higher-dimensional Euclidean spaces, the principal curvatures may be defined in a directly analogous fashion. The principal curvatures are the eigenvalues of the matrix of the second fundamental form in an orthonormal basis of the tangent space. The principal directions are the corresponding eigenvectors.

Similarly, if M is a hypersurface in a Riemannian manifold N, then the principal curvatures are the eigenvalues of its second-fundamental form. If k1, ..., kn are the n principal curvatures at a point pM and X1, ..., Xn are corresponding orthonormal eigenvectors (principal directions), then the sectional curvature of M at p is given by

for all with .

Classification of points on a surface

  • At elliptical points, both principal curvatures have the same sign, and the surface is locally convex.
    • At umbilic points, both principal curvatures are equal and every tangent vector can be considered a principal direction. These typically occur in isolated points.
  • At hyperbolic points, the principal curvatures have opposite signs, and the surface will be locally saddle shaped.
  • At parabolic points, one of the principal curvatures is zero. Parabolic points generally lie in a curve separating elliptical and hyperbolic regions.
    • At flat umbilic points both principal curvatures are zero. A generic surface will not contain flat umbilic points. The monkey saddle is one surface with an isolated flat umbilic.
Surface point classes[1]
k1
< 0 = 0 > 0
k2 < 0 Concave ellipsoid Concave cylinder Hyperboloid surface
= 0 Concave cylinder Plane Convex cylinder
> 0 Hyperboloid surface Convex cylinder Convex ellipsoid

Line of curvature

The lines of curvature or curvature lines are curves which are always tangent to a principal direction (they are integral curves for the principal direction fields). There will be two lines of curvature through each non-umbilic point and the lines will cross at right angles.

In the vicinity of an umbilic the lines of curvature typically form one of three configurations star, lemon and monstar (derived from lemon-star).[2] These points are also called Darbouxian Umbilics (D1, D2, D3) in honor of Gaston Darboux, the first to make a systematic study in Vol. 4, p 455, of his Leçons (1896).

In these figures, the red curves are the lines of curvature for one family of principal directions, and the blue curves for the other.

When a line of curvature has a local extremum of the same principal curvature then the curve has a ridge point. These ridge points form curves on the surface called ridges. The ridge curves pass through the umbilics. For the star pattern either 3 or 1 ridge line pass through the umbilic, for the monstar and lemon only one ridge passes through.[3]

Applications

Principal curvature directions along with the surface normal, define a 3D orientation frame at a surface point. For example, in case of a cylindrical surface, by physically touching or visually observing, we know that along one specific direction the surface is flat (parallel to the axis of the cylinder) and hence take note of the orientation of the surface. The implication of such an orientation frame at each surface point means any rotation of the surfaces over time can be determined simply by considering the change in the corresponding orientation frames. This has resulted in single surface point motion estimation and segmentation algorithms in computer vision.[4]

See also

References

  1. ^ Surface Curvature
  2. ^ Berry, M. V.; Hannay, J. H. (1977). "Umbilic points on Gaussian random surfaces". Journal of Physics A. 10 (11): 1809–21. Bibcode:1977JPhA...10.1809B. doi:10.1088/0305-4470/10/11/009. S2CID 55230556.
  3. ^ Porteous, I. R. (1994). Geometric Differentiation. Cambridge University Press. ISBN 0-521-39063-X.
  4. ^ Perera, S.; Barnes, N. (November 2013). "1-Point Rigid Motion Estimation and Segmentation with a RGB-D Camera". 2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA). pp. 1–8. doi:10.1109/DICTA.2013.6691469. ISBN 978-1-4799-2126-3. S2CID 15915653.

Further reading

Read other articles:

Kerajaan Đại Cồ ViệtĐại Cồ Việt Quốc (大瞿越國)980–1009Map Kerajaan Đại Cồ Việt (Đại Việt)StatusKekaisaranIbu kotaHoa LưBahasa yang umum digunakanBahasa Tionghoa KunoAgama BuddhismePemerintahanMonarkiKaisar • 980–1005 Lê Đại Hành (pertama)• 1005 Lê Trung Tông• 1005–1009 Lê Ngọa Triều (terakhir) Kanselir • 980 Hồng Hiến Sejarah • Kaisar Song Taizong mengumpulkan pasukan untuk menyerang...

 

Henrike IRaja NavarraComte ChampagneBerkuasa1270–1274PendahuluTibalt IIPenerusJeanne IInformasi pribadiKelahiranskt. 1244Kematian22 Juli 1274PamplonaPemakamanKatedral PamplonaWangsaWangsa BloisAyahThibaut I dari NavarraIbuMarguerite dari BourbonPasanganBlanka dari ArtoisAnakTibalt dari NavarraJeanne I dari NavarraAgamaKatolik Roma Henrike yang Gendut (bahasa Basque: Henrike I.a, Gizena, bahasa Prancis: Henri le Gros, bahasa Spanyol: Enrique el Gordo) (skt. 1244 – 22 Juli 1274) merupakan s...

 

Alfonsas Petrulis Alfonsas Petrulis pengucapanⓘ(1873-1928) adalah seorang jurnalis dan imam Katolik Roma Lithuania, dan salah satu dari dua puluh penandatangan Undang-Undang Kemerdekaan Lithuania. Lahir dekat Biržai, ia masuk seminari di Kaunas, Vilnius dan St. Petersburg, dan ditahbiskan pada 1899. Ia kemudian melayani sejumlah paroki di Keuskupan Vilnius. Petrulis aktif dalam gerakan kemerdekaan Lithuania dari 1899 sampai 1918; ia berkarya di sekolah-sekolah dan surat-surat kabar, dan me...

Legislative election in Arizona 2008 Arizona Senate election ← 2006 November 4, 2008 2010 → All 30 seats of the Arizona Senate16 seats needed for a majority   Majority party Minority party   Leader Robert Bob Burns Jorge Luis Garcia Party Republican Democratic Leader's seat 9th 27th Seats before 17 13 Seats after 18 12 Seat change 1 1 Results:     Democratic hold      Republican hold  &#...

 

Miami-Dade Transit metro station ●● Government CenterMetrorail metro stationMetromover people mover stationThree modes of transit operating simultaneously at Government Center stationGeneral informationLocation101 NW 1st Street (Metrorail)138 NW 3rd Street (Metromover)Miami, FloridaCoordinates25°46′33″N 80°11′45″W / 25.77583°N 80.19583°W / 25.77583; -80.19583Owned byMiami-Dade CountyPlatforms1 island platform (Metrorail)2 side platforms (Metromover)Trac...

 

Institut Biologi KelautanGedung tempat institut itu beradaDidirikan1953KepalaHalyna MinichevaLokasiOdesa, UkrainaAlamat37, Pushkinska St., 65011 Odesa, UkrainaSitus webhttp://imb.odessa.ua/ Institut Biologi Kelautan adalah lembaga penelitian dari National Academy of Sciences Ukraina, yang berlokasi di Odesa, Ukraina . Institut ini diselenggarakan atas dasar Cabang Odesa dari Institut Biologi Laut Selatan. Sejarah Bangunan tua Stasiun Biologi Odesa di desa Lustdorf Institut ini didirikan pada ...

Jerman, menunjukan perbatasan modern. Daerah yang berwarna biru muda adalah Baden-Württemberg. Ke timur dari B-W adalah Bavaria, dengan Swabia dalam warna pink. Swabia, Suabia, atau Svebia (bahasa Jerman: Schwaben or Schwabenland) adalah daerah yang terletak di Jerman. Pada abad pertengahan, Baden, Vorarlberg, wilayah modern di Liechtenstein, Swiss, dan Elsas (sekarang dimiliki Prancis) juga merupakan bagian dari Swabia. Pranala luar Swabian history and culture on Swabia.org Diarsipkan 2007-...

 

Comune in Tuscany, ItalyCastell'AzzaraComuneComune di Castell'Azzara Coat of armsLocation of Castell'Azzara Castell'AzzaraLocation of Castell'Azzara in ItalyShow map of ItalyCastell'AzzaraCastell'Azzara (Tuscany)Show map of TuscanyCoordinates: 42°46′N 11°42′E / 42.767°N 11.700°E / 42.767; 11.700CountryItalyRegionTuscanyProvinceGrosseto (GR)FrazioniSelvenaGovernment • MayorMaurizio CoppiArea[1] • Total64.23 km2 (24.80 sq...

 

  提示:此条目页的主题不是中華人民共和國最高領導人。 中华人民共和国 中华人民共和国政府与政治系列条目 执政党 中国共产党 党章、党旗党徽 主要负责人、领导核心 领导集体、民主集中制 意识形态、组织 以习近平同志为核心的党中央 两个维护、两个确立 全国代表大会 (二十大) 中央委员会 (二十届) 总书记:习近平 中央政治局 常务委员会 中央书记处 �...

Artikel ini mungkin terdampak dengan peristiwa terkini: Kerusuhan Kai Cenat. Informasi di halaman ini bisa berubah setiap saat. Tanda ini diberikan pada August 2023 Kai CenatCenat pada tahun 2021Personal informationLahirKai Carlo Cenat16 Desember 2001 (umur 22)Kota New York, Amerika SerikatPendidikanUniversitas Negeri New York, MorrisvillePekerjaanpenggiat TwitchYouTuberrapperSitus webkaicenat.comInformasi TwitchNama samaranKC3Kanal kaicenat Aktif2021–sekarangGenre Permainan Sekadar ob...

 

River in Wyoming and Nebraska, United States Niobrara RiverNiobrara River at the Nebraska Highway 7 crossingMap of the Niobrara River (light blue)EtymologyPonca, Ní Ubthátha khe, translating to water spread-out horizontal-theNative nameNí Ubthátha khe (Omaha–Ponca)LocationCountryUnited StatesStateWyoming, NebraskaCitiesNiobrara, NE, Anncar, NE, Valentine, NE, Agate, NE, Van Tassell, WY, Lusk, WYPhysical characteristicsSource  • locationNiobrara County, nea...

 

NFL team season 1997 Seattle Seahawks seasonOwnerPaul AllenHead coachDennis EricksonHome fieldKingdomeResultsRecord8–8Division place3rd AFC WestPlayoff finishDid not qualifyPro BowlersQB Warren MoonDE Michael SinclairLB Chad BrownFS Darryl WilliamsAP All-ProsFS Darryl Williams (2nd team) ← 1996 Seahawks seasons 1998 → The 1997 Seattle Seahawks season was the team's 22nd season with the National Football League (NFL). This season would mark a new era for the Seahaw...

غيرا    علم شعار الاسم الرسمي (بالألمانية: Gera)‏    الإحداثيات 50°52′41″N 12°04′57″E / 50.87818°N 12.08242°E / 50.87818; 12.08242   [1] تاريخ التأسيس 995  تقسيم إداري  البلد ألمانيا[2][3]  التقسيم الأعلى تورينغن (3 أكتوبر 1990–)  خصائص جغرافية  المساحة 15...

 

Perpustakaan BritaniaPerpustakaan Britania dilihat dari ruang tungguLokasi96, Euston Road, London, England, NW1 2DB,  Britania RayaJenisPerpustakaan nasionalDidirikan1973 (1753)Branches2 (Boston Spa, West Yorkshire dan Colindale, London)CollectionBarang yang dikoleksibuku, jurnal, surat kabar, majalah, suara dan rekaman musik, paten, basis data, peta, prangko, seni grafis, gambar dan naskahUkuran150.000.000 total item 13.950.000 buku[1] 824.101 judul seri 351.116 manuskrip (singe...

 

اضغط هنا للاطلاع على كيفية قراءة التصنيف نورس مخطط الذيل حالة الحفظ أنواع غير مهددة أو خطر انقراض ضعيف جدا [1] المرتبة التصنيفية نوع[2][3]  التصنيف العلمي النطاق: حقيقيات النوى المملكة: حيوانات الشعبة: حبليات الشعيبة: فقاريات العمارة: رباعية الأطراف الطائفة: طي...

Wangsa NatoliKelompok etnisFrancaRegion saat iniNorwegia, Kepulauan Orkney, Prancis, Kerajaan Dua Sisilia, Spanyol, Kerajaan Sperlinga, LombardiaTempat asalParis Keluarga Natoli Mereka adalah keluarga bangsawan kuno bangsawan feodal Italia na, asal Prancis.[1][2] Keluarga Natoli termasuk bangsawan bangsawan asal Prancis yang bisa membanggakan asal-usul yang sangat kuno. Menurut sejarawan dan genealogi Philadelphus Mugnos yang pertama dari keluarga akan ada sebelum tahun 813. A...

 

.hm

Cet article est une ébauche concernant Internet. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. .hmPrésentationType Domaine de premier niveau nationalFondation 24 juillet 1997Site web www.registry.hmLocalisationLocalisation  Australiemodifier - modifier le code - modifier Wikidata .hm est le domaine national de premier niveau (country code top level domain : ccTLD) réservé aux îles Heard-et-MacDo...

 

Era of United States history in the 1780s Not to be confused with Confederate States of America. United States of America1781–1789 Flag Seal Motto: E pluribus unum (Latin)Out of many, oneAnthem: None officialMap of the United States and territories after the Treaty of Paris (1783)StatusUnrecognized state (Until 1783)CapitalPhiladelphia(1781–1783)Princeton(1783)Annapolis(1783–1784)Trenton(1784)New York City(1784–1789)GovernmentRevolutionary confederal republic(1781–1783)Con...

Audrieu Audrieu Vị trí trong vùng Lower Normandy Audrieu Hành chính Quốc gia Pháp Vùng Normandie Tỉnh Calvados Quận Caen Tổng Tilly-sur-Seulles Liên xã Val de Seulles Xã (thị) trưởng Jean-Louis Lebouteiller(2008-2014) Thống kê Độ cao 37–105 m (121–344 ft)(bình quân 45 m (148 ft)[chuyển đổi: tùy chọn không hợp lệ]) Diện tích đất1 11,31 km2 (4,37 dặm vuông Anh) INSEE/Mã bưu chính 14026/ 14250 A...

 

خافيير أغيري معلومات شخصية الاسم الكامل خافيير أغيري أوناينديا الميلاد 1 ديسمبر 1958 (العمر 65 سنة)مكسيكو ، المكسيك الطول 1.73 م (5 قدم 8 بوصة) مركز اللعب وسط الجنسية مكسيكي معلومات النادي النادي الحالي ريال مايوركا (مدرب) مسيرة الشباب سنوات فريق أمريكا المسيرة الاحترافي�...