Sucrose phosphorylase

Sucrose phosphorylase
Sucrose phosphorylase homodimer, Bifidobacterium adolescentis
Identifiers
EC no.2.4.1.7
CAS no.9074-06-0
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Search
PMCarticles
PubMedarticles
NCBIproteins

Sucrose phosphorylase (EC 2.4.1.7) is an important enzyme in the metabolism of sucrose and regulation of other metabolic intermediates. Sucrose phosphorylase is in the class of hexosyltransferases. More specifically it has been placed in the retaining glycoside hydrolases family although it catalyzes a transglycosidation rather than hydrolysis. Sucrose phosphorylase catalyzes the conversion of sucrose to D-fructose and α-D-glucose-1-phosphate.[1] It has been shown in multiple experiments that the enzyme catalyzes this conversion by a double displacement mechanism.

Reaction

The method by which sucrose phosphorylase converts sucrose to D-fructose and alpha-D-glucose-1-phosphate has been studied in great detail. In the reaction, sucrose binds to the enzyme, at which point fructose is released by the enzyme-substrate complex. A covalent glucose-enzyme complex results, with beta-linkage between an oxygen atom in the carboxyl group of an aspartyl residue and C-1 of glucose. The covalent complex was experimentally isolated by chemical modification of the protein using NaIO4 after addition of the substrate,[2][3] supporting the hypothesis that reaction catalyzed by sucrose phosphorylase proceeds through the ping-pong mechanism. In the final enzymatic step, the glycosidic bond is cleaved through reaction with a phosphate group, yielding α-D-glucose-1-phosphate.

In a separate reaction, α-D-glucose-1-phosphate is converted to glucose-6-phosphate by the action of phosphoglucomutase.[4] Glucose-6-phosphate is an extremely important intermediate for several pathways in the human body, including glycolysis, gluconeogenesis, and the pentose phosphate pathway.[5] The function of sucrose phosphorylase is especially significant due to the role α-D-glucose-1-phosphate in energy metabolism.

Structure

The structure of sucrose phosphorylase has been identified in numerous experiments. The enzyme consists of four major domains, namely A, B, B’, and C. Domains A, B’ and C exist as dimers around the active site.[6] The size of the enzyme, as determined by sedimentation centrifugation, was found to be 55 KDa, consisting of 488 amino acids.[7] The active has been shown to contain two binding sites, one designated a water site where hydroxylic molecules such as 1,2-cyclohexanediol and ethylene glycol may bind, and another designated as the acceptor site where the sugar molecule binds. Though the function of the water site has not been completely elucidated, the enzyme's stability in aqueous solutions indicates that the water site may be involved in hydrolysis of the glycosidic bond.

The acceptor site is surrounded by three active residues that have been found to be essential in enzymatic activity. Using specific mutagenic assays, Asp-192 was found to be the catalytic nucleophile of the enzyme, “attacking C-1 of the glucosyl moiety of sucrose”.[8] In fact, in vitro manipulation has shown that D-xylose, L-sorbose, and L-arabinose can replace fructose as the glucosyl acceptor.[9] The only requirement of the acceptor molecule is that the hydroxyl group on the C-3 be cis-disposed to the oxygen atom of the glycosidic bond. Glu-232 acts as the Bronsted acid-base catalyst, donating a proton to the displaced hydroxyl group on C-1 of the glucoside.[10]

The most significant residue in the enzymatic activity, however, is Asp-295.[11] Upon cleavage of the fructofuranosyl moiety from sucrose, the resultant glucose forms a covalent intermediate with the enzyme. The carboxylate side chain of Asp-295 hydrogen bonds with the hydroxyl groups at C-2 and C-3 of the glucosyl residue.[11] This interaction is maximized during the transition state of this covalent complex, lending support to the ping-pong mechanism. Finally, phosphorylation of the glucosyl residue at C-1 forms a transient positive charge on the glucosyl carbon, promoting breakage of the ester bond between Asp-192 and the sugar residue.[8] Cleavage yields the product, α-D-glucose-1-phosphate.

Regulation

Since the discovery and characterization of sucrose phosphorylase, few documented experiments discuss mechanisms of regulation for the enzyme. The known methods of regulation are transcriptional, affecting the amount of enzyme present at any given time.

Global regulation of DNA molecules containing the gene for sucrose phosphorylase is performed by catabolite repression. First discovered in Gram-negative bacteria, both Cyclic AMP (cAMP) and cAMP Receptor Protein (CRP) function in sucrose phosphorylase regulation.[1] The cAMP-CRP complex formed when both molecules combine acts as a positive regulator for transcription of the sucrose phosphorylase gene. The complex binds to the promoter region to activate transcription, enhancing the creation of sucrose phosphorylase.[5]

Genetic regulation of sucrose phosphorylase is also performed by metabolites. Through experimentation it is known that genes encoding for the sucrose phosphorylase enzyme can be induced by sucrose and raffinose.[12] Glucose, on the other hand, represses the transcription of the sucrose phosphorylase gene.[12] These metabolites undoubtedly function in this way because of their implications in cellular metabolism.

There has been little research on methods of the allosteric regulation of sucrose phosphorylase, so at this point the function of allosteric molecules can only be hypothesized. Due to the nature of its function in metabolic pathways, it is likely that sucrose phosphorylase is additionally regulated by other common metabolites.[citation needed] For example, the presence of ATP would probably inhibit sucrose phosphorylase since ATP is a product of the catabolic pathway. Conversely, ADP would likely stimulate sucrose phosphorylase to increase levels of ATP. Further research on the subject would be required to support or refute these ideas.

Function

As mentioned above, sucrose phosphorylase is a very important enzyme in metabolism. The reaction catalyzed by sucrose phosphorylase produces the valuable byproducts α-D-glucose-1-phosphate and fructose. α-D-glucose-1-phosphate can be reversibly converted by phosphoglucomutase to glucose-6-phosphate,[4] which is an important intermediate used in glycolysis. In addition, fructose can be reversibly converted into fructose 6-phosphate,[1] also found in the glycolytic pathway. In fact, fructose-6-phosphate and glucose-6-phosphate can be interconverted in the glycolytic pathway by phosphohexose isomerase.[5] The final product of glycolysis, pyruvate, has multiple implications in metabolism. During anaerobic conditions, pyruvate con be converted into either lactate or ethanol, depending on the organism, providing a quick source of energy. In aerobic conditions, pyruvate can be converted into Acetyl-CoA, which has many possible fates including catabolism in the Citric Acid Cycle for energy use and anabolism in the formation of fatty acids for energy storage. Through these reactions, sucrose phosphorylase becomes important in the regulation of metabolic functions.

The regulation of sucrose phosphorylase can also be used to explain its function in terms of energy consumption and preservation. The cAMP-CRP complex that enhances transcription of the sucrose phosphorylase gene (Reid and Abratt 2003) is only present when glucose levels are low. The purpose of sucrose phosphorylase, therefore, can be linked to the need for higher glucose levels, created through its reaction. The fact that glucose acts as a feedback inhibitor to prevent the formation of sucrose phosphorylase[1] further supports its catalytic role in the creation of glucose for energy use or storage.

The glucose-6-phosphate molecule created from the original α-D-glucose-1-phosphate product is also involved in the pentose phosphate pathway. Through a series of reactions, glucose-6-phosphate can be converted into ribose-5-phosphate, which is used for a variety of molecules such as nucleotides, coenzymes, DNA, and RNA.[5] These connections reveal that sucrose phosphorylase is also important for the regulation of other cellular molecules.

References

  1. ^ a b c d Reid SJ, Abratt VR (May 2005). "Sucrose utilisation in bacteria: genetic organisation and regulation". Applied Microbiology and Biotechnology. 67 (3): 312–21. doi:10.1007/s00253-004-1885-y. PMID 15660210.
  2. ^ Voet JG, Abeles RH (March 1970). "The mechanism of action of sucrose phosphorylase. Isolation and properties of a beta-linked covalent glucose-enzyme complex". The Journal of Biological Chemistry. 245 (5): 1020–31. PMID 4313700.
  3. ^ Mirza O, Skov LK, Sprogøe D, van den Broek LA, Beldman G, Kastrup JS, Gajhede M (November 2006). "Structural rearrangements of sucrose phosphorylase from Bifidobacterium adolescentis during sucrose conversion". The Journal of Biological Chemistry. 281 (46): 35576–84. doi:10.1074/jbc.M605611200. PMID 16990265.
  4. ^ a b Tedokon M, Suzuki K, Kayamori Y, Fujita S, Katayama Y (April 1992). "Enzymatic assay of inorganic phosphate with use of sucrose phosphorylase and phosphoglucomutase". Clinical Chemistry. 38 (4): 512–5. PMID 1533182.
  5. ^ a b c d Nelson DL, Cox MM (2005). Lehninger Principles of Biochemistry (4th ed.). New York: W.H. Freeman and Company.
  6. ^ Sprogøe D, van den Broek LA, Mirza O, Kastrup JS, Voragen AG, Gajhede M, Skov LK (February 2004). "Crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis". Biochemistry. 43 (5): 1156–62. doi:10.1021/bi0356395. PMID 14756551.
  7. ^ Koga T, Nakamura K, Shirokane Y, Mizusawa K, Kitao S, Kikuchi M (July 1991). "Purification and some properties of sucrose phosphorylase from Leuconostoc mesenteroides". Agricultural and Biological Chemistry. 55 (7): 1805–10. PMID 1368718.
  8. ^ a b Schwarz A, Nidetzky B (July 2006). "Asp-196-->Ala mutant of Leuconostoc mesenteroides sucrose phosphorylase exhibits altered stereochemical course and kinetic mechanism of glucosyl transfer to and from phosphate". FEBS Letters. 580 (16): 3905–10. doi:10.1016/j.febslet.2006.06.020. PMID 16797542.
  9. ^ Mieyal JJ, Simon M, Abeles RH (January 1972). "Mechanism of action of sucrose phosphorylase. 3. The reaction with water and other alcohols". The Journal of Biological Chemistry. 247 (2): 532–42. PMID 5009699.
  10. ^ Schwarz A, Brecker L, Nidetzky B (May 2007). "Acid-base catalysis in Leuconostoc mesenteroides sucrose phosphorylase probed by site-directed mutagenesis and detailed kinetic comparison of wild-type and Glu237-->Gln mutant enzymes". The Biochemical Journal. 403 (3): 441–9. doi:10.1042/BJ20070042. PMC 1876375. PMID 17233628.
  11. ^ a b Mueller M, Nidetzky B (April 2007). "The role of Asp-295 in the catalytic mechanism of Leuconostoc mesenteroides sucrose phosphorylase probed with site-directed mutagenesis". FEBS Letters. 581 (7): 1403–8. doi:10.1016/j.febslet.2007.02.060. PMID 17350620.
  12. ^ a b Trindade MI, Abratt VR, Reid SJ (January 2003). "Induction of sucrose utilization genes from Bifidobacterium lactis by sucrose and raffinose". Applied and Environmental Microbiology. 69 (1): 24–32. doi:10.1128/AEM.69.1.24-32.2003. PMC 152442. PMID 12513973.

Read other articles:

Untuk orang dengan nama yang sama, lihat Adam Khan (disambiguasi). AdhamKhanPernikahan Adham Khan, putra Maham Anga, Akbarnama sekitar 1590-1595.Lahir1531KabulMeninggal16 Mei 1562Benteng Agra, AgraPekerjaanJenderal Kekaisaran MughalDikenal atasPenaklukan MalwaSuami/istriJaveda BegumAnakBaqi BegumAbdullah KhanSher KhanBibi MubarakOrang tuaMaham Anga Adham Khan (Hindi: आधम खान) (kematian Mei 1562) adalah seorang jenderal dari Akbar. Ia adalah putra dari Maham Anga. Akbar menikahinya...

 

Philippine pay television film channel This article is about a television channel formerly known as Viva Cinema until 2003. For the TV channel launched in 2009 as Viva Cinema, see Viva Cinema (TV channel). For other uses, see PBO. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs to be updated. Please help update this article to reflect recent events or newly available in...

 

1956 film by Michael Anderson Around the World in 80 DaysTheatrical release posterDirected byMichael AndersonScreenplay by James Poe John Farrow S. J. Perelman Based onAround the World in Eighty Days1873 novelby Jules VerneProduced byMichael ToddStarring Cantinflas David Niven Robert Newton Shirley MacLaine CinematographyLionel LindonEdited byGene RuggieroHoward EpsteinMusic byVictor YoungProductioncompanyMichael Todd CompanyDistributed byUnited ArtistsRelease dates October 17, 1956...

FleabagJudul FleabagGenre Drama komedi Tragikomedi PembuatPhoebe Waller-BridgeDitulis olehPhoebe Waller-BridgeSutradara Harry Bradbeer Tim Kirkby (e. 1) Pemeran Phoebe Waller-Bridge Sian Clifford Olivia Colman Bill Paterson Brett Gelman Hugh Skinner Hugh Dennis Ben Aldridge Jamie Demetriou Jenny Rainsford Andrew Scott Fiona Shaw Kristin Scott Thomas Ray Fearon Penata musikIsobel Waller-BridgeNegara asalBritania RayaBahasa asliInggrisJmlh. seri2Jmlh. episode12 (daftar episode)ProduksiPr...

 

Untuk kegunaan lain, lihat Asmara (disambiguasi). AsmaraGenre Drama Roman SkenarioSerena LunaCeritaSerena LunaSutradaraDesiana LarasatiPemeran Velove Vexia Yasmine Wildblood Glenn Alinskie Fero Walandouw Alice Norin Penggubah lagu temaD'BagindasLagu pembukaYang Nomer 1 oleh D'BagindasLagu penutupYang Nomer 1 oleh D'BagindasPenata musikMichael ChristianNegara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim1Jmlh. episode24ProduksiProduser eksekutifElly Yanti NoorProduserLeo SutantoPen...

 

ناورو بوابة ويكيبيديا حول إحدى أوقيانوسيا جمهورية ناورو (بالإنجليزية: Republic of Nauru)‏ أو ما كانت تعرف قديما باسم الجزيرة السعيدة أو الجزيرة المبهجة هي دولة جزرية تقع في مايكرونيزيا في المحيط الهادي. أقرب الجزر لها هي جزيرة بانابا في جمهورية كيريباس، التي تبعد عنها 300 كم شرقاً....

Johan RenckLahir5 Desember 1966 (umur 57)Uppsala, SwediaNama lainStakka BoPekerjaanSutradara film, sutradara video musik, penulis-pengarang laguTahun aktif1991–sekarangSitus webwww.johanrenck.com[1] Bo Johan Renck (lahir 5 Desember 1966) adalah sutradara video musik, seri TV, dan film asal Swedia. Ia aktif sebagai penyanyi-pengarang lagu pada tahun 1991–2001 dengan nama panggung Stakka Bo. Karier Musik Stakka Bo memiliki satu singel hit pada tahun 1993 berjudul Her...

 

Pour les articles homonymes, voir espace. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (août 2011). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique ...

 

United States historic placeOld Chicago Historical Society BuildingU.S. National Register of Historic PlacesChicago Landmark HABS image from 1963Show map of Central ChicagoShow map of IllinoisShow map of the United StatesLocation632 N. Dearborn StreetChicago, IllinoisCoordinates41°53′36.92″N 87°37′47.85″W / 41.8935889°N 87.6299583°W / 41.8935889; -87.6299583Built1892ArchitectHenry Ives CobbArchitectural styleRomanesque, GothicNRHP reference ...

American cryptographer Taher A. ElgamalTaher A. Elgamal (2010)Born (1955-08-18) 18 August 1955 (age 68)Cairo, EgyptNationalityAmerican, EgyptianAlma materCairo University (BSc)Stanford University (MS, PhD)Known forSSLPublic-keyElGamalDiscrete logarithm cryptographyAwardsRSA Conference Lifetime Achievement Award (2009)Marconi Prize (2019)National Academy of Engineering (2022)Scientific careerFieldsCryptographyInstitutionsSalesforce.comDoctoral advisorMartin Hellman Taher Elgamal...

 

Европейская сардина Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёры...

 

Highest mountain of Russia and Europe Not to be confused with Mount Erebus, Mount Elbert, or Alborz. For other uses, see Elbrus (disambiguation). Mount ElbrusMount Elbrus, seen from the northHighest pointElevation5,642 m (18,510 ft)[1][2][3]Prominence4,741 m (15,554 ft)Ranked 10thListingSeven SummitsVolcanic Seven SummitsCountry high pointUltraCoordinates43°21′18″N 42°26′21″E / 43.35500°N 42.43917°E / 43.3550...

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

JustifiedImmagine dalla sigla originale della serieTitolo originaleJustified PaeseStati Uniti d'America Anno2010-2015 Formatoserie TV Generepoliziesco, western, drammatico Stagioni6 Episodi78 Durata45 min (episodio) Lingua originaleinglese Rapporto16:9 CreditiIdeatoreGraham Yost Interpreti e personaggi Timothy Olyphant: Raylan Givens Nick Searcy: Art Mullen Joelle Carter: Ava Crowder Jacob Pitts: Tim Gutterson Erica Tazel: Rachel Brooks Natalie Zea: Winona Hawkins Walton Goggins: Boyd...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) توم هاوس   معلومات شخصية الميلاد 29 أبريل 1947 (77 سنة)  سياتل  مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم جامعة كاليفورنيا الجنوبية  المهن...

Short story by Anton ChekhovThe BetShort story by Anton ChekhovOriginal titleПариCountryRussian EmpireLanguageRussianPublicationPublished inNovoye VremyaPublisherAdolf Marks (1901)Publication date14 January 1889 The Bet (short story) The Bet (Russian: Пари, romanized: Pari) is an 1889 short story by Anton Chekhov about a banker and a young lawyer who make a bet with each other following a conversation about whether the death penalty is better or worse than life in priso...

 

Television series Kookie redirects here. For the newspaper column character Dr. I. M. Kookie, see Mike Royko. For the Czech comedy film, see Kooky. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 77 Sunset Strip – news · newspapers · books · scholar · JSTOR (August 2021) (Learn how and when to remove this me...

 

Porta ArgenteaPorta ArgenteaPorta Orientalismura romane di MilanoModello in legno conservato presso il Civico museo archeologico di Milano che mostra una ricostruzione della Mediolanum imperialeUbicazioneStato attuale Italia CittàMilano Coordinate45°27′58.22″N 9°11′50.51″E45°27′58.22″N, 9°11′50.51″E Informazioni generaliStileromano Inizio costruzionedopo il 291 Demolizionedurante l'assedio di Milano del 1162 VisitabileNon più esistente Informazioni militariUtilizzat...

SUCKER HEADSuckerhead bersama Krisna dkk saat masih eksis mengeliat dalam kancah musik metal tanah air.Informasi latar belakangNama lainSakerhets (1989)AsalJakarta, IndonesiaGenreThrash metal, Heavy metalTahun aktif1989–2017, 2022 sampai sekarangLabelAquarius Musikindo Pony Canyon Krossover Records / Trinity Optima Armstretch RecordsArtis terkaitGrausig, Brain The Machine, RotorAnggotaNano / Roseno Soeryadi (gitar) Jaya (gitar) Mantan anggotaKrisna J. Sadrach (bass & vokal) (alm.) Imran...

 

Extinct genus of primates DendropithecusTemporal range: Early–Middle Miocene PreꞒ Ꞓ O S D C P T J K Pg N Dendropithecus macinnesi jaw Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Primates Suborder: Haplorhini Infraorder: Simiiformes Family: †Dendropithecidae Genus: †DendropithecusAndrews and Simons, 1977 Species D. macinnesi (Clark and Leakey, 1950) (type species) D. ugandensis (Pickford et al., 2010) Dendropithecus is an exti...