Phosphoglucomutase

Phosphoglucomutase
Rabbit muscle phosphoglucomutase, drawn from PDB: 1JDY
Identifiers
EC no.5.4.2.2
CAS no.9001-81-4
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Search
PMCarticles
PubMedarticles
NCBIproteins

Phosphoglucomutase (EC 5.4.2.2) is an enzyme that transfers a phosphate group on an α-D-glucose monomer from the 1 to the 6 position in the forward direction or the 6 to the 1 position in the reverse direction.

More precisely, it facilitates the interconversion of glucose 1-phosphate and glucose 6-phosphate.

Function

Role in glycogenolysis

After glycogen phosphorylase catalyzes the phosphorolytic cleavage of a glucosyl residue from the glycogen polymer, the freed glucose has a phosphate group on its 1-carbon. This glucose 1-phosphate molecule is not itself a useful metabolic intermediate, but phosphoglucomutase catalyzes the conversion of this glucose 1-phosphate to glucose 6-phosphate (see below for the mechanism of this reaction).

Glucose 6-phosphate’s metabolic fate depends on the needs of the cell at the time it is generated. If the cell is low on energy, then glucose 6-phosphate will travel down the glycolytic pathway, eventually yielding two molecules of adenosine triphosphate. If the cell is in need of biosynthetic intermediates, glucose 6-phosphate will enter the pentose phosphate pathway, where it will undergo a series of reactions to yield riboses and/or NADPH, depending on cellular conditions.

If glycogenolysis is taking place in the liver, glucose 6-phosphate can be converted to glucose by the enzyme glucose 6-phosphatase; the glucose produced in the liver is then released to the bloodstream for use in other organs. Muscle cells in contrast do not have the enzyme glucose 6-phosphatase, so they cannot share their glycogen stores with the rest of the body.

Role in glycogenesis

Phosphoglucomutase also acts in the opposite fashion when blood glucose levels are high. In this case, phosphoglucomutase catalyzes the conversion of glucose 6-phosphate (which is easily generated from glucose by the action of hexokinase) to glucose 1-phosphate.

This glucose-1-phosphate can then react with UTP to yield UDP-glucose in a reaction catalyzed by UDP-glucose-pyrophosphorylase. If activated by insulin, glycogen synthase will proceed to clip the glucose from the UDP-glucose complex onto a glycogen polymer.

Reaction mechanism

Phosphoglucomutase affects a phosphoryl group shift by exchanging a phosphoryl group with the substrate.[1] Isotopic labeling experiments have confirmed that this reaction proceeds through a glucose 1,6-bisphosphate intermediate.[2]

The first step in the forward reaction is the transfer of a phosphoryl group from the enzyme to glucose 1-phosphate, forming glucose 1,6-bisphosphate and leaving a dephosphorylated form of the enzyme.[2] The enzyme then undergoes a rapid diffusional reorientation to position the 1-phosphate of the bisphosphate intermediate properly relative to the dephosphorylated enzyme.[3] Substrate-velocity relationships and induced transport tests have revealed that the dephosphorylated enzyme then facilitates the transfer of a phosphoryl group from the glucose-1,6-bisphosphate intermediate to the enzyme, regenerating phosphorylated phosphoglucomutase and yielding glucose 6-phosphate (in the forward direction).[4][5] Later structural studies confirmed that the single site in the enzyme that becomes phosphorylated and dephosphorylated is the oxygen of the active-site serine residue (see diagram below).[6][7] A bivalent metal ion, usually magnesium or cadmium, is required for enzymatic activity and has been shown to complex directly with the phosphoryl group esterified to the active-site serine.[8]

Mechanism for the phosphoglucomutase-catalyzed interconversion of glucose 1-phosphate and glucose 6-phosphate.

This formation of a glucose 1,6-bisphosphate intermediate is analogous to the interconversion of 2-phosphoglycerate and 3-phosphoglycerate catalyzed by phosphoglycerate mutase, in which 2,3-bisphosphoglycerate is generated as an intermediate.[9]

Structure

The four domains of rabbit muscle phosphoglucomutase, drawn from PDB: 1JDY​. Green = Domain I, Blue = Domain II, Red = Domain III, Yellow = Domain IV. Pink residue = Serine 116.

While rabbit muscle phosphoglucomutase has served as the prototype for much of the elucidation of this enzyme's structure, newer bacterium-derived crystal structures exhibit many of the same defining characteristics.[10] Each phosphoglucomutase monomer can be divided into four sequence domains, I-IV, based on the enzyme’s default spatial configuration (see image at right).[11]

Each monomer comprises four distinct α/β structural units, each of which contains one of the four strands in each monomer's β-sheet and is made up only of the residues in a given sequence domain (see image at right).[11] The burial of the active site (including Ser-116, the critical residue on the enzyme that is phosphorylated and dephosphorylated) in the hydrophobic interior of the enzyme serves to exclude water from counterproductively hydrolyzing critical phosphoester bonds while still allowing the substrate to access the active site.[12]

Disease relevance

Human muscle contains two isoenzymes of phosphoglucomutase with nearly identical catalytic properties, PGM I and PGM II.[13] One or the other of these forms is missing in some humans congenitally.[14] PGM1 deficiency is known as PGM1-CDG or CDG syndrome type 1t (CDG1T), formerly known as glycogen storage disease type 14 (GSD XIV).[15][16] The disease is both a glycogenosis and a congenital disorder of glycosylation.[17][18] It is also a metabolic myopathy and an inborn error of carbohydrate metabolism.[19]

PGM deficiency is an extremely rare condition that does not have a set of well-characterized physiological symptoms. This condition can be detected by an in vitro study of anaerobic glycolysis which reveals a block in the pathway toward lactic acid production after glucose 1-phosphate but before glucose 6-phosphate.[20] There are two forms of PGM1-CDG: 1.) exclusively myogenic, and 2.) multi-system (including muscles).[16]

The usual pathway for glycogen formation from blood glucose is blocked, as without phosphoglucomutase, glucose-6-phosphate cannot convert into glucose-1-phosphate. However, an alternative pathway from galactose can form glycogen by converting galactose → galactose-1-phosphate → glucose-1-phosphate. This allows glycogen to form, but without phosphoglucomutase, glucose-1-phosphate cannot convert into glucose-6-phosphate for glycolysis. This causes abnormal glycogen accumulation in muscle cells, observable in muscle biopsy.[16][21]

Although the phenotype and severity of the disease is highly variable, common symptoms include: exercise intolerance, exercise-induced hyperammonemia, abnormal glycogen accumulation in muscle biopsy, elevated serum CK, abnormal serum transferrin (loss of complete N-glycans), short stature, cleft palate, bifid uvula, and hepatopathy.[16][21]

A "second wind" phenomenon is observable in some, but not all, by measuring heart rate while on a treadmill.[16][22] At rest, muscle cells rely on blood glucose and free fatty acids; upon exertion, muscle glycogen is needed along with blood glucose and free fatty acids.[23][24] The reliance on muscle glycogen increases with higher-intensity aerobic exercise and all anaerobic exercise.[23][24]

Without being able to create ATP from stored muscle glycogen, during exercise there is a low ATP reservoir (ADP>ATP). Under such circumstances, the heart rate and breathing increases inappropriately given the exercise intensity, in an attempt to maximize the delivery of oxygen and blood borne fuels to the muscle cell. Free fatty acids are the slowest of the body's bioenergetic systems to produce ATP by oxidative phosphorylation, at approximately 10 minutes.[23] The relief of exercise intolerance symptoms, including a drop in heart rate of at least 10 BPM while going the same speed on the treadmill, after approximately 10 minutes of aerobic exercise is called "second wind," where increased ATP is being produced from free fatty acids.

Another consequence of a low ATP reservoir (ADP>ATP) during exercise, due to not being able to produce ATP from muscle glycogen, is increased use of the myokinase (adenylate kinase) reaction and the purine nucleotide cycle. The myokinase reaction produces AMP (2 ADP → ATP + AMP), and then the purine nucleotide cycle both uses AMP and produces more AMP along with fumarate (the fumarate is then converted and produces ATP via oxidative phosphorylation). Ammonia (NH3) is a byproduct in the purine nucleotide cycle when AMP is converted into IMP. During a non-ischemic forearm test, PGM1-CDG individuals show exercise-induced elevated serum ammonia (hyperammonemia) and normal serum lactate rise.[16][18][19]

Studies in other diseases that have a glycolytic block have shown during ischemic and non-ischemic forearm exercise tests, that not only does ammonia rise, but after exercise, rises also in serum inosine, hypoxanthine, and uric acid.[25][26] These studies supported that when the exercise is stopped or sufficient ATP is produced from other fuels (such as free fatty acids), then the ATP reservoir normalizes and the buildup of AMP and other nucleotides covert into nucleosides and leave the muscle cell to be converted into uric acid, known as myogenic hyperuricemia. AMP → IMP → Inosine → Hypoxanthine → Xanthine → Uric acid. Unfortunately, the studies on PGM1-CDG only tested for serum ammonia and lactate, so it is currently unknown definitively whether PGM1-CDG individuals also experience myogenic hyperuricemia.[16][18][19]

Genes

See also

References

  1. ^ Jagannathan V, Luck JM (June 1949). "Phosphoglucomutase; mechanism of action". The Journal of Biological Chemistry. 179 (2): 569–575. doi:10.1016/S0021-9258(19)51252-2. PMID 18149991.
  2. ^ a b Najjar VA, Pullman ME (May 1954). "The occurrence of a group transfer involving enzyme (phosphoglucomutase) and substrate". Science. 119 (3097): 631–634. Bibcode:1954Sci...119..631N. doi:10.1126/science.119.3097.631. PMID 13156640.
  3. ^ Ray Jr WJ, Peck EJ (1972). "Phosphomutases". In Boyer PD (ed.). The Enzymes. Vol. 6 (3rd ed.). New York: Academic Press. pp. 407–477. doi:10.1016/S1874-6047(08)60047-5. ISBN 978-0-12-122706-7.
  4. ^ Ray WJ, Roscelli GA (April 1964). "A Kinetic Study of the Phosphoglucomutase Pathway". The Journal of Biological Chemistry. 239 (4): 1228–1236. doi:10.1016/S0021-9258(18)91416-X. PMID 14165931.
  5. ^ Britton HG, Clarke JB (November 1968). "The mechanism of the phosphoglucomutase reaction. Studies on rabbit muscle phosphoglucomutase with flux techniques". The Biochemical Journal. 110 (2): 161–180. doi:10.1042/bj1100161. PMC 1187194. PMID 5726186.
  6. ^ Ray WJ, Mildvan AS, Grutzner JB (December 1977). "Phosphorus nuclear magnetic resonance studies of phosphoglucomutase and its metal ion complexes". Archives of Biochemistry and Biophysics. 184 (2): 453–463. doi:10.1016/0003-9861(77)90455-6. PMID 23074.
  7. ^ Ray WJ, Hermodson MA, Puvathingal JM, Mahoney WC (August 1983). "The complete amino acid sequence of rabbit muscle phosphoglucomutase". The Journal of Biological Chemistry. 258 (15): 9166–9174. doi:10.1016/S0021-9258(17)44646-1. PMID 6223925.
  8. ^ Rhyu GI, Ray WJ, Markley JL (January 1984). "Enzyme-bound intermediates in the conversion of glucose 1-phosphate to glucose 6-phosphate by phosphoglucomutase. Phosphorus NMR studies". Biochemistry. 23 (2): 252–260. doi:10.1021/bi00297a013. PMID 6230103.
  9. ^ Sutherland EW, Cohn M (October 1949). "The mechanism of the phosphoglucomutase reaction". The Journal of Biological Chemistry. 180 (3): 1285–1295. doi:10.1016/S0021-9258(19)51242-X. PMID 18148026.
  10. ^ Mehra-Chaudhary R, Mick J, Tanner JJ, Henzl MT, Beamer LJ (April 2011). "Crystal structure of a bacterial phosphoglucomutase, an enzyme involved in the virulence of multiple human pathogens". Proteins. 79 (4): 1215–1229. doi:10.1002/prot.22957. PMC 3066478. PMID 21246636.
  11. ^ a b Dai JB, Liu Y, Ray WJ, Konno M (March 1992). "The crystal structure of muscle phosphoglucomutase refined at 2.7-angstrom resolution". The Journal of Biological Chemistry. 267 (9): 6322–6337. doi:10.1016/S0021-9258(18)42699-3. PMID 1532581.
  12. ^ Ray WJ, Puvathingal JM, Liu YW (July 1991). "Formation of substrate and transition-state analogue complexes in crystals of phosphoglucomutase after removing the crystallization salt". Biochemistry. 30 (28): 6875–6885. doi:10.1021/bi00242a011. PMID 1829964.
  13. ^ Joshi JG, Handler P (June 1969). "Phosphoglucomutase. VI. Purification and properties of phosphoglucomutases from human muscle". The Journal of Biological Chemistry. 244 (12): 3343–3351. doi:10.1016/S0021-9258(18)93132-7. PMID 4978319.
  14. ^ Brown DH (1986). "Glycogen metabolism and glycolysis in muscle". Myology: Basic and Clinical. New York: McGraw-Hill. pp. 673–95. ISBN 978-0-07-079570-9.
  15. ^ "Orphanet: Glycogen storage disease due to phosphoglucomutase deficiency". www.orpha.net. Retrieved May 13, 2021.
  16. ^ a b c d e f g Altassan R, Radenkovic S, Edmondson AC, Barone R, Brasil S, Cechova A, et al. (January 2021). "International consensus guidelines for phosphoglucomutase 1 deficiency (PGM1-CDG): Diagnosis, follow-up, and management". Journal of Inherited Metabolic Disease. 44 (1): 148–163. doi:10.1002/jimd.12286. PMC 7855268. PMID 32681750.
  17. ^ Tegtmeyer LC, Rust S, van Scherpenzeel M, Ng BG, Losfeld ME, Timal S, et al. (February 2014). "Multiple phenotypes in phosphoglucomutase 1 deficiency". The New England Journal of Medicine. 370 (6): 533–542. doi:10.1056/NEJMoa1206605. PMC 4373661. PMID 24499211.
  18. ^ a b c Stojkovic T, Vissing J, Petit F, Piraud M, Orngreen MC, Andersen G, et al. (July 2009). "Muscle glycogenosis due to phosphoglucomutase 1 deficiency". The New England Journal of Medicine. 361 (4): 425–427. doi:10.1056/NEJMc0901158. PMID 19625727.
  19. ^ a b c Hogrel JY, Janssen JB, Ledoux I, Ollivier G, Béhin A, Stojkovic T, et al. (October 2017). "The diagnostic value of hyperammonaemia induced by the non-ischaemic forearm exercise test" (PDF). Journal of Clinical Pathology. 70 (10): 896–898. doi:10.1136/jclinpath-2017-204324. PMID 28400468. S2CID 36935686.
  20. ^ Sugie H, Kobayashi J, Sugie Y, Ichimura M, Miyamoto R, Ito T, et al. (April 1988). "Infantile muscle glycogen storage disease: phosphoglucomutase deficiency with decreased muscle and serum carnitine levels". Neurology. 38 (4): 602–605. doi:10.1212/WNL.38.4.602. PMID 2965317. S2CID 11491932.
  21. ^ a b "Congenital Disorder of Glycosylation, Type It; CDG1T". Online Mendelian Inheritance in Man. 2012-07-11.
  22. ^ Preisler N, Cohen J, Vissing CR, Madsen KL, Heinicke K, Sharp LJ, et al. (November 2017). "Impaired glycogen breakdown and synthesis in phosphoglucomutase 1 deficiency". Molecular Genetics and Metabolism. 122 (3): 117–121. doi:10.1016/j.ymgme.2017.08.007. PMID 28882528.
  23. ^ a b c "Berne and Levy Physiology, 6th ed 38. Hormonal Regulation of Energy Metabolism".
  24. ^ a b van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ (October 2001). "The effects of increasing exercise intensity on muscle fuel utilisation in humans". The Journal of Physiology. 536 (Pt 1): 295–304. doi:10.1111/j.1469-7793.2001.00295.x. PMC 2278845. PMID 11579177.
  25. ^ Mineo I, Kono N, Hara N, Shimizu T, Yamada Y, Kawachi M, et al. (July 1987). "Myogenic hyperuricemia. A common pathophysiologic feature of glycogenosis types III, V, and VII". The New England Journal of Medicine. 317 (2): 75–80. doi:10.1056/NEJM198707093170203. PMID 3473284.
  26. ^ Mineo I, Tarui S (1995). "Myogenic hyperuricemia: what can we learn from metabolic myopathies?". Muscle & Nerve. Supplement. 3: S75 – S81. doi:10.1002/mus.880181416. PMID 7603532. S2CID 41588282.

Read other articles:

Aequorea Aequorea victoria (jeli kristal) dengan dua amphipodaTaksonomiKerajaanAnimaliaFilumCnidariaKelasHydrozoaOrdoLeptothecataFamiliAequoreidaeGenusAequorea Péron dan Lesueur, 1809 lbs Aequorea adalah sebuah genus dari ubur-ubur Hydrozoa pelagik dari familia Aequoreidae.[1] Spesies Berikut adalah spesies dalam genus Aequorea: Aequorea africana Millard, 1966 Aequorea albida L. Agassiz, 1862 Aequorea atrikeelis Lin, Xu, Huang & Wang, 2009 Aequorea australis Uchida, 1947 Aequore...

 

 

Halaman ini berisi artikel tentang istana di Damaskus. Untuk istana di Hamat yang dibangun oleh klien yang sama, lihat Istana Azm (Hamat). Istana Azmقصر العظمNama lainQasr al-AzmInformasi umumJenisIstana, MuseumGaya arsitekturOttomanLokasiDamascus, SyriaAlamatAl-Buzuriyah SouqRampung1750Tanggal renovasi1945-1961KlienAs'ad Pasha al-AzmData teknisJumlah lantai2Tim renovasiPenghargaanPenghargaan Aga Khan untuk Arsitektur Istana Azm (Arab: قصر العظمcode: ar is deprecated ) adalah ...

 

 

This article is about the area of Edinburgh. For the cricket club of the same name, see The Grange Club. Human settlement in ScotlandThe GrangeVilla in The GrangeThe GrangeLocation within the City of Edinburgh council areaShow map of the City of Edinburgh council areaThe GrangeLocation within ScotlandShow map of ScotlandOS grid referenceNT260716Council areaCity of EdinburghLieutenancy areaEdinburghCountryScotlandSovereign stateUnited KingdomPost townEDINBURGHPostcode&...

Chronologies Louis XV chassant le cerf, Jean-Baptiste Oudry, 1730.Données clés 1727 1728 1729  1730  1731 1732 1733Décennies :1700 1710 1720  1730  1740 1750 1760Siècles :XVIe XVIIe  XVIIIe  XIXe XXeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architecture, Arts plastiques (Dessin, Gravure, Peinture et Sculpture), Littérature, Musique classique et Théâtre   Ingénierie (), Architecture et ()   Politiqu...

 

 

Mata ayam Klasifikasi ilmiah Kerajaan: Plantae Divisi: Magnoliophyta Kelas: Magnoliopsida Ordo: Arecales Famili: Myrsinaceae Genus: Ardisia Spesies: A. crispa Nama binomial Ardisia crispa Mata ayam atau juga dikenali sebagai mata pelanduk adalah tumbuhan renek yang mempunyai daun yang memanjang dan bergeligih. Tumbuhan ini merupakan sejenis tumbuhan tropikal. Nama sainsnya Ardisia crispa. Pokok Mata Pelanduk/Mata Ayam. Pengidentifikasi taksonArdisia crispa Wikidata: Q11294922 Wikispecie...

 

 

Untuk kitab Alkitab, lihat Kitab Ester. Untuk istilah gugus senyawa kimia, lihat Ester (kimia). Untuk kegunaan lain, lihat Ester (disambiguasi). Ester (bahasa Ibrani: אֶסְתֵּר, Modern Ester Tiberias ʼEstēr; Inggris: Esther), lahir dengan nama Hadasa (Inggris: Hadassah), anak Abihail, seorang Yahudi yang tinggal di Persia. Ia yang menjadi tokoh utama dalam Kitab Ester, bagian dari Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen. Dicatat bahwa ia dipilih menjad...

Questa voce o sezione sull'argomento governi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Governo di Rudinì IV Stato Italia Presidente del ConsiglioAntonio di Rudinì(Destra storica) CoalizioneDestra storica LegislaturaXX Giuramento14 dicembre 1897 Dimissioni28 maggio 1898 Governo successivoDi Rudinì V1º giugno 1898 Di Rudinì III Di Rudinì V...

 

 

Questa voce sull'argomento popoli antichi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Territori slavi verso il 1150 Gli Evelli (Heveller in lingua tedesca) furono una popolazione di origine slava che visse nel medio bacino del fiume Havel e che apparteneva al gruppo dei Venedi (slavi dell'Elba e del Mar Baltico). La loro denominazione propria era Stodorjane. Il nome alto-tedesco moderno Heveller (da cui l'italiano Evelli) proviene da una forma di ...

 

 

Very thin gold used in art Goldleaf redirects here. For other uses, see Gold leaf (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gold leaf – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) A gold nugget of 5 mm (0.2 in) in di...

Defunct football club in Calais, France For the active football club based in Calais, see RC Calais. Football clubCRUFCFull nameCalais Racing Union Football ClubNickname(s)Les Sangs et Ors (The Blood(-Reds) and Golds) Les Canaris (The Canaries)Founded1974Dissolved2017GroundStade de l'ÉpopéeCapacity12,432 Home colours Away colours Calais Racing Union FC (Calais RUFC) was a French football club based in Calais, France. Calais RUFC was founded in 1974 after a merger of two local clubs and, as ...

 

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

 

2010 single by Nelly Just a DreamSingle by Nellyfrom the album 5.0 ReleasedAugust 16, 2010 (2010-08-16)Recorded2010StudioThe Hit FactoryPlayland Playhouse (Miami, Florida)GenrePop rapR&BLength3:57LabelDerrtyUniversal MotownSongwriter(s)Cornell Haynes Jr.James SchefferRichard Butler, Jr.Frank RomanoProducer(s)Jim JonsinRico LoveNelly singles chronology Stepped on My J'z (2008) Just a Dream (2010) Move That Body (2010) Music videoJust a Dream on YouTube Just a Dream is a song...

African-American author and activist Frances HarperBornFrances Ellen WatkinsSeptember 24, 1825Baltimore, MarylandDiedFebruary 22, 1911(1911-02-22) (aged 85)Philadelphia, PennsylvaniaGenrePoetry, short story, essaysNotable worksIola Leroy (1892) Sketches of Southern Life (1872)SpouseFenton Harper (m. 1860)ChildrenMary Frances Harper (1862–1908)Frances Ellen Watkins Harper (September 24, 1825 – February 22, 1911) was an American abolitionist, suffragist, poet, temperance activist, teac...

 

 

جامعة لفوف الطبية الوطنية بأسم دانيلا هاليتسكوهو Львівський національний медичний університет імені Данила Галицького شعار جامعة لفوف الطبية الوطنية باسم دانيلا هاليتسكوهوЛНМУ   معلومات التأسيس 1784 النوع جامعة حكومية الموقع الجغرافي إحداثيات 49°50′02″N 24°03′12″E / ...

 

 

German archaeologist (1806–1859) Ludwig RossLudwig Ross, photographed in later lifeBorn(1806-07-22)22 July 1806Bornhöved, Holstein, DenmarkDied6 August 1859(1859-08-06) (aged 53)Halle an der SaaleOccupationArchaeologistKnown forEphor General of Antiquities of Greece; restoration of the Temple of Athena Nike.TitleEphor General (1834–1836)Spouse Emma Schwetschke ​(m. 1847)​RelativesCharles Ross (brother)Academic backgroundEducationChristian-Albrechts...

Gambrinus liga 2000/01Datos generalesSede República Checa República ChecaFecha 28 de julio del 200025 de mayo de 2001Edición 8Organizador Federación de Fútbol de la República ChecaPalmarésPrimero AC Sparta PragaSegundo SK Slavia PragaTercero SK Sigma OlomoucDatos estadísticosParticipantes 16Partidos 240Partidos jugados 240Máximo goleador Vítězslav Tuma (15) Intercambio de plazas Ascenso(s): SK Hradec Králové SFC Opava Descenso(s): SK České Budějovice FC Viktoria PlzeňCro...

 

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (فبراير 2023) بطولة إفريقيا للجودو 2004معلومات عامةموسم لـ بطولة إفريقيا للجودو الاسم المختص...

 

 

  此条目页的主題是北部湾上的一个岛屿。关于该岛所属的越南海防市下辖的县份,請見「白龙尾县」。 白龙尾岛Bạch Long Vĩ白龙尾岛卫星照片白龙尾岛白龙尾岛的位置地理位置北部湾坐标20°08′41″N 107°42′51″E / 20.14472°N 107.71417°E / 20.14472; 107.71417 (Thổ Chu Island)面積3.045平方公里(1.176平方英里)管轄 越南市海防市县白龙尾县人口统计人...

Method of divination that interprets markings on the ground Geomancer redirects here. For other uses, see Geomancer (disambiguation). This article is about the African and European divination technique. For the Chinese art of aesthetics, see Feng shui. For the Chinese philosophical tradition, see Wuxing (Chinese philosophy). This article may be in need of reorganization to comply with Wikipedia's layout guidelines. Please help by editing the article to make improvements to the overall structu...

 

 

German publisher, founder of Kurt Wolff Verlag For the World War I flying ace, see Kurt Wolff (aviator). Some books published by Kurt Wolff Kurt Wolff (3 March 1887 – 21 October 1963) was a German publisher, editor, writer, and journalist. Wolff was born in Bonn, Rhenish Prussia; his mother came from a Jewish-German family.[1] He married Elisabeth Karoline Clara Merck (1890–1970), of the Darmstadt pharmaceuticals firm, in 1909. Together with Ernst Rowohlt, Wolff began to work ...