The raffinose family of oligosaccharides (RFOs) are α-galactosyl derivatives of sucrose, the most common being the trisaccharide raffinose, the tetrasaccharidestachyose, and the pentasaccharide verbascose. RFOs are almost ubiquitous across the plant kingdom, being found in a large variety of seeds from many different families. They rank second only to sucrose in abundance as soluble carbohydrates.[1]
Raffinose typically crystallises as a pentahydrate white crystalline powder.[2] It is odorless and has a sweet taste approximately 10% that of sucrose.[3]
Biochemical properties
Energy source
It is non-digestible in humans and other monogastric animals (pigs and poultry) who do not possess the α-GAL enzyme to break down RFOs. These oligosaccharides pass undigested through the stomach and small intestine. In the large intestine, they are fermented by bacteria that do possess the α-GAL enzyme and make short-chain fatty acids (SCFA)(acetic, propionic, butyric acids), as well as the flatulence commonly associated with eating beans and other vegetables. These SCFAs have been recently found to impart a number of health benefits.[citation needed] α-GAL is present in digestive aids such as the product Beano.[4]
Plant Health
Cases of abiotic stress such as temperature, drought, and salinity have shown to increase RFO levels, especially raffinose, in plants. The functional role raffinose plays in abiotic stress tolerance is not well known, but its presence as a positive regulator of these stresses is established.[5]
Galactinol synthase (GolS) is an enzyme key in the synthesis of RFOs. Studies which modify the expression of GolS have been done to understand the role of RFOs in stress response.[6][7] GolS has been found to induce salicylic acid signalling pathways and expression of defence-related genes, showing RFOs to have a role in pathogen resistance.
RFOs have been seen to assist in seed germination. They are used as a source of energy and carbon for germination, and protect the seed from desiccation during the maturation process. One proposed mechanism of RFOs working against desiccation details the hydroxyl groups replacing water to maintain hydrophilicity ion the cell, which stabilizes the membrane structure and macromolecules needed for cellular function. Another mechanism, called "vitrification", has the cell taking on a highly viscous form, like that of a plastic solid. This maintains cellular stability and hydrogen bonding in the cell, and prevents cellular collapse.[8]
In many plants, RFOs have been seen to act as an alternative to sucrose for sugar storage and transport.[9]
Disease relevance
Research has shown that the differential ability to utilize raffinose by strains of the bacteria Streptococcus pneumoniae impacts their ability to cause disease and the nature of the disease.[10]
Uses
Procedures concerning cryopreservation have used raffinose to provide hypertonicity for cell desiccation prior to freezing.[11] Either raffinose or sucrose is used as a base substance for sucralose.