Spiral of Theodorus

The spiral of Theodorus up to the triangle with a hypotenuse of

In geometry, the spiral of Theodorus (also called the square root spiral, Pythagorean spiral, or Pythagoras's snail)[1] is a spiral composed of right triangles, placed edge-to-edge. It was named after Theodorus of Cyrene.

Construction

The spiral is started with an isosceles right triangle, with each leg having unit length. Another right triangle (which is the only automedian right triangle) is formed, with one leg being the hypotenuse of the prior right triangle (with length the square root of 2) and the other leg having length of 1; the length of the hypotenuse of this second right triangle is the square root of 3. The process then repeats; the th triangle in the sequence is a right triangle with the side lengths and 1, and with hypotenuse . For example, the 16th triangle has sides measuring , 1 and hypotenuse of .

History and uses

Although all of Theodorus' work has been lost, Plato put Theodorus into his dialogue Theaetetus, which tells of his work. It is assumed that Theodorus had proved that all of the square roots of non-square integers from 3 to 17 are irrational by means of the Spiral of Theodorus.[2]

Plato does not attribute the irrationality of the square root of 2 to Theodorus, because it was well known before him. Theodorus and Theaetetus split the rational numbers and irrational numbers into different categories.[3]

Hypotenuse

Each of the triangles' hypotenuses gives the square root of the corresponding natural number, with .

Plato, tutored by Theodorus, questioned why Theodorus stopped at . The reason is commonly believed to be that the hypotenuse belongs to the last triangle that does not overlap the figure.[4]

Overlapping

In 1958, Kaleb Williams proved that no two hypotenuses will ever coincide, regardless of how far the spiral is continued. Also, if the sides of unit length are extended into a line, they will never pass through any of the other vertices of the total figure.[4][5]

Extension

Colored extended spiral of Theodorus with 110 triangles

Theodorus stopped his spiral at the triangle with a hypotenuse of . If the spiral is continued to infinitely many triangles, many more interesting characteristics are found.

Growth rate

Angle

If is the angle of the th triangle (or spiral segment), then: Therefore, the growth of the angle of the next triangle is:[1]

The sum of the angles of the first triangles is called the total angle for the th triangle. It grows proportionally to the square root of , with a bounded correction term :[1] where (OEISA105459).

A triangle or section of spiral

Radius

The growth of the radius of the spiral at a certain triangle is

Archimedean spiral

The Spiral of Theodorus approximates the Archimedean spiral.[1] Just as the distance between two windings of the Archimedean spiral equals mathematical constant , as the number of spins of the spiral of Theodorus approaches infinity, the distance between two consecutive windings quickly approaches .[6]

The following table shows successive windings of the spiral approaching pi:

Winding No.: Calculated average winding-distance Accuracy of average winding-distance in comparison to π
2 3.1592037 99.44255%
3 3.1443455 99.91245%
4 3.14428 99.91453%
5 3.142395 99.97447%

As shown, after only the fifth winding, the distance is a 99.97% accurate approximation to .[1]

Continuous curve

Philip J. Davis' analytic continuation of the Spiral of Theodorus, including extension in the opposite direction from the origin (negative nodes numbers).

The question of how to interpolate the discrete points of the spiral of Theodorus by a smooth curve was proposed and answered by Philip J. Davis in 2001 by analogy with Euler's formula for the gamma function as an interpolant for the factorial function. Davis found the function[7] which was further studied by his student Leader[8] and by Iserles.[9] This function can be characterized axiomatically as the unique function that satisfies the functional equation the initial condition and monotonicity in both argument and modulus.[10]

An analytic continuation of Davis' continuous form of the Spiral of Theodorus extends in the opposite direction from the origin.[11]

In the figure the nodes of the original (discrete) Theodorus spiral are shown as small green circles. The blue ones are those, added in the opposite direction of the spiral. Only nodes with the integer value of the polar radius are numbered in the figure. The dashed circle in the coordinate origin is the circle of curvature at .

See also

References

  1. ^ a b c d e Hahn, Harry K. (2007), The ordered distribution of natural numbers on the square root spiral, arXiv:0712.2184
  2. ^ Nahin, Paul J. (1998), An Imaginary Tale: The Story of , Princeton University Press, p. 33, ISBN 0-691-02795-1
  3. ^ Plato; Dyde, Samuel Walters (1899), The Theaetetus of Plato, J. Maclehose, pp. 86–87
  4. ^ a b Long, Kate, A Lesson on The Root Spiral, archived from the original on 11 April 2013, retrieved 30 April 2008
  5. ^ Teuffel, Erich (1958), "Eine Eigenschaft der Quadratwurzelschnecke", Mathematisch-Physikalische Semesterberichte zur Pflege des Zusammenhangs von Schule und Universität, 6: 148–152, MR 0096160
  6. ^ Hahn, Harry K. (2008), The distribution of natural numbers divisible by 2, 3, 5, 7, 11, 13, and 17 on the square root spiral, arXiv:0801.4422
  7. ^ Davis (2001), pp. 37–38.
  8. ^ Leader, Jeffery James (1990), The generalized Theodorus iteration (PhD thesis), Brown University, p. 173, MR 2685516, ProQuest 303808219
  9. ^ In an appendix to (Davis 2001)
  10. ^ Gronau (2004). An alternative derivation is given in Heuvers, Moak & Boursaw (2000).
  11. ^ Waldvogel (2009).

Further reading

Read other articles:

Bagian dari seri tentangBuddhisme Awal Teks Buddhis Teks Buddhis Awal Bhāṇaka Tipiṭaka Nikāya Āgama Teks Buddhis Gandhāra Jataka Avadana Abhidharma Sidang Buddhis Pertama Kedua Ketiga Keempat Buddhisme Awal Buddhisme prasektarian → Aliran Buddhis awal Mahāsāṃghika Ekavyāvahārika Lokottaravāda Gokulika Bahuśrutīya Prajñaptivāda Caitika (Haimavata) Sthavira nikāya (Sthaviravāda) Pudgalavāda Vātsīputrīya Saṃmitīya Sarvāstivāda (Haimavata) (Kāśyapīya) (Mahīśā...

 

Ikan duyung Feejee milik P.T. Barnum dari tahun 1842 Ikan duyung lain, yang terbuat dari papier-mâché, dari koleksi Moses Kimball yang sama..[1]―Museum Arkeologi dan Etnologi Peabody, Universitas Harvard Ikan duyung Fiji (juga ikan duyung Feejee) adalah sebuah benda yang terbuat dari dada dan kepala monyet remaja yang disatukan dengan separuh bagian belakang dari seekor ikan. Ini adalah benda umum dari acara-acara yang menampilkannya sebagai jasad makhluk yang termumifikasi yang d...

 

Halaman ini berisi artikel tentang desa Palestina di barat daya Yerusalem. Untuk pertempuran pada invasi Persia oleh Arab, lihat Pertempuran Walaja. al-WalajaMunisipalitas jenis D (Dewan desa)Transkripsi Arab • Arabالولجة • Latinal-Walaje (resmi)al-WalajaLokasi al-Walaja di PalestinaKoordinat: 31°43′53″N 35°09′49″E / 31.73139°N 35.16361°E / 31.73139; 35.16361Koordinat: 31°43′53″N 35°09′49″E / 31.7...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) بطولة أمم إفريقيا لكرة السلة 1962 المعطيات المنطقة أفريقيا المستضيف  الجمهورية العربية المتحدة العام 196...

 

Sebuah iklan untuk hak cipta dan jasa persiapan paten dari tahun 1906, ketika formalitas pendaftaran hak cipta masih diperlukan di Amerika Serikat.Pelanggaran hak cipta (dikenal dengan istilah pembajakan) adalah penggunaan suatu materi yang masih dilindungi hak cipta tanpa seizin pencipta atau pemegang haknya, dalam hal ini melanggar hak eksklusif tertentu yang diberikan kepada pemegang hak cipta seperti menggandakan, mereproduksi, mendistribusikan, menampilkan atau memamerkan ciptaan, atau m...

 

Cet article est une ébauche concernant une équipe nationale de football et l’île de Man. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Équipe de l'île de Man Généralités Confédération Association internationale des jeux des îles Couleurs Rouge et jaune Stade principal The Bowl (Douglas) (en) Personnalités Sélectionneur Paul Jones Rencontres officielles historiques Premier match 4 juillet 19...

Chinese fencer (born 1973) In this Chinese name, the family name is Wang. Wang HaibinWang in 2019Personal informationBorn (1973-12-27) 27 December 1973 (age 50)Nanjing, Jiangsu, ChinaSportSportFencing Medal record Men's fencing Representing  China Olympic Games 2000 Sydney team foil 2004 Athens team foil Wang Haibin (simplified Chinese: 王海滨; traditional Chinese: 王海濱; pinyin: Wáng Hǎibīn; born 27 December 1973 in Nanjing, Jiangsu) is Chairman of the China F...

 

Le masochisme est la recherche d'un plaisir dans la douleur. À l'origine, cette recherche est liée à des pratiques à caractère sexuel. Par extension, les conduites masochistes sont le fait de personnes qui recherchent la souffrance et l'humiliation, et/ou qui s'y complaisent[1]. Le terme « masochisme », forgé par le psychiatre Krafft-Ebing, dérive du nom de l'écrivain allemand Leopold von Sacher-Masoch. Origines du terme « masochisme » Richard von Krafft-Ebing ...

 

Questa voce sull'argomento tennisti spagnoli è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Questa voce o sezione sull'argomento tennisti spagnoli non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Albert Portas-Soy Albert Portas nel 2006 Nazionalità  Spagna Altezza 187 cm Peso 78 kg Tennis Termine carriera 20...

У этого термина существуют и другие значения, см. Чайки (значения). Чайки Доминиканская чайкаЗападная чайкаКалифорнийская чайкаМорская чайка Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:Вторич...

 

Banten IIDaerah pemilihanuntuk Dewan Perwakilan RakyatRepublik IndonesiaWilayah Daftar Kabupaten : Serang Kota : Cilegon Serang ProvinsiBantenPopulasi2.852.453 (2023)[1]Elektorat2.059.041 (2024)[2]Daerah pemilihan saat iniDibentuk2004Kursi11 (2004—09)6 (2009—sekarang)Anggota  Masih lowong (Gerindra)  Ichsan Soelistio (PDI-P)  Tubagus Haerul Jaman (Golkar)  Jazuli Juwaini (PKS)  Yandri Susanto (PAN)  Nur'aeni (Demokrat)Dibentuk dariJa...

 

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

Commune in Nouvelle-Aquitaine, FranceHendaye HendaiaCommuneHendaye harbour Coat of armsLocation of Hendaye HendayeShow map of FranceHendayeShow map of Nouvelle-AquitaineCoordinates: 43°22′N 1°46′W / 43.36°N 1.77°W / 43.36; -1.77CountryFranceRegionNouvelle-AquitaineDepartmentPyrénées-AtlantiquesArrondissementBayonneCantonHendaye-Côte Basque-SudIntercommunalityCA Pays BasqueGovernment • Mayor (2020–2026) Kotte Écénarro[1]Area18...

 

1994 Extreme Championship Wrestling live event Not to be confused with Crossing the Line Again or Crossing the Line '99. The Night the Line Was CrossedThe ECW ArenaPromotionEastern Championship WrestlingDateFebruary 5, 1994CityPhiladelphia, Pennsylvania, USVenueECW ArenaAttendancec.1,000Event chronology ← PreviousHoliday Hell Next →Ultimate Jeopardy The Night the Line Was Crossed was a professional wrestling live event produced by Eastern Championship Wrestling (ECW) on February...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of historic states of Germany – news · newspapers · books · scholar · JSTOR (March 2022) (Learn how and when to remove this message) Former German constituent states Part of a series on the History of Germany Topics Chronology Historiography Military history Economic histor...

Town in Hertfordshire, England Not to be confused with Hatfield, Herefordshire or Hatfield, South Yorkshire. Human settlement in EnglandHatfieldThe Old Palace at Hatfield HouseHatfieldLocation within HertfordshirePopulation41,265 (2021 Census) [1]OS grid referenceTL2308Civil parishHatfield[2]DistrictWelwyn HatfieldShire countyHertfordshireRegionEastCountryEnglandSovereign stateUnited KingdomPost townHATFIELDPostcode districtAL9, AL10Dialling ...

 

Promozione 1977-1978 Competizione Promozione Sport Calcio Edizione 11ª Organizzatore L.N.D.Comitati Regionali Luogo  Italia Formula 26 gironi all'italiana Cronologia della competizione 1976-1977 1978-1979 Manuale Nella stagione 1977-1978, la Promozione era il quinto livello del calcio italiano (il primo livello regionale). Il campionato è strutturato in vari gironi all'italiana su base regionale, gestiti dai Comitati Regionali di competenza. Promozioni alla categoria superiore e retro...

 

2013 studio album by Rebecca FrazierWhen We FallStudio album by Rebecca FrazierReleasedMay 28, 2013 (2013-05-28)GenreBluegrassCountryFolkAmericanaLabelCompassProducerBrent TruittRebecca Frazier When We Fall is the second studio album by bluegrass, Americana, and folk artist, Rebecca Frazier. The album, co-produced by Brent Truitt, was released on May 28, 2013. The album is Frazier's first release with Nashville-based Compass Records. All of the songs and guitar instrume...

11-pointed star polygon HendecagramThe four regular hendecagramsEdges and vertices11Schläfli symbol{11/2}, {11/3}{11/4}, {11/5}Coxeter–Dynkin diagrams, , Symmetry groupDih11, order 22Internal angle (degrees)≈114.545° {11/2}≈81.8182° {11/3}≈49.0909° {11/4}≈16.3636° {11/5} In geometry, a hendecagram (also endecagram or endekagram) is a star polygon that has eleven vertices. The name hendecagram combines a Greek numeral prefix, hendeca-, with the Greek suffix -gram. The hendeca- p...

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Panama–Uruguay relations – news · newspapers · books · scholar · JSTOR (September 2011) Bilateral relationsPanama-Uruguay relations Panama Uruguay Panama – Uruguay relations are bilateral relations between Panama and Uruguay. Both countries are me...