310 helix

Side view of a 310-helix of alanine residues in atomic detail. Two hydrogen bonds to the same peptide group are highlighted in magenta; the oxygen-hydrogen distance is 1.83 Å (183 pm). The protein chain runs upwards, i.e., its N-terminus is at the bottom and its C-terminus at the top of the figure. Note that the sidechains point slightly downwards, i.e., towards the N-terminus.

A 310 helix is a type of secondary structure found in proteins and polypeptides. Of the numerous protein secondary structures present, the 310-helix is the fourth most common type observed; following α-helices, β-sheets and reverse turns. 310-helices constitute nearly 10–15% of all helices in protein secondary structures, and are typically observed as extensions of α-helices found at either their N- or C- termini. Because of the α-helices tendency to consistently fold and unfold, it has been proposed that the 310-helix serves as an intermediary conformation of sorts, and provides insight into the initiation of α-helix folding.

Top view of the same helix shown to the right. Three carbonyl groups are pointing upwards towards the viewer, spaced roughly 120° apart on the circle, corresponding to 3.0 amino-acid residues per turn of the helix.

Discovery

Max Perutz, the head of the Medical Research Council Laboratory of Molecular Biology at the University of Cambridge, wrote the first paper documenting the elusive 310-helix.[1] Together with Lawrence Bragg and John Kendrew, Perutz published an exploration of polypeptide chain configurations in 1950, based on cues from noncrystalline diffraction data as well as from small molecule crystal structures such as crystalline found in hair.[2] Their proposals included what is now known as the 310 helix, but did not include the two most common structural motifs now known to occur. The following year, Linus Pauling predicted both of those motifs, the alpha helix[3] and the beta sheet,[4] in work which is now compared in significance[1] to Francis Crick and James D. Watson's publication of the DNA double helix.[5] Pauling was highly critical of the helical structures proposed by Bragg, Kendrew, and Perutz, taking a triumphal tone in declaring them all implausible.[1][3] Perutz describes in his book I wish I'd made you angry sooner[6] the experience of reading Pauling's paper one Saturday morning:

I was thunderstruck by Pauling and Corey's paper. In contrast to Kendrew's and my helices, theirs was free of strain; all of the amide groups were planar and every carbonyl group formed a perfect hydrogen bond with an amino group four residues further along the chain. The structure looked dead right. How could I have missed it?

— Max Perutz, 1998, pp.173-175.[6]

Later that day, an idea for an experiment to confirm Pauling's model occurred to Perutz, and he rushed to the lab to carry it out. Within a few hours, he had the evidence to confirm the alpha helix, which he showed to Bragg first thing on Monday.[1] Perutz' confirmation of the alpha helix structure was published in Nature shortly afterwards.[7] The principles applied in the 1950 paper to theoretical polypeptide structures, true of the 310 helix, included:[2]

  • The chains are held together by hydrogen bonding between the hydrogen and oxygen atoms of different by nearby amide (peptide) links formed as the amino acids condense to form the polypeptide chain. These form helical arrangements that cannot be uncoiled without breaking the hydrogen bonds.
  • Those structures in which all available NH and CO groups are hydrogen bonded are inherently more probable, because their free energy is presumably lower.

The 310 helix was eventually confirmed by Kendrew in his 1958 structure of myoglobin,[8] and was also found in Perutz' 1960 determination of the structure of haemoglobin[9][10][11] and in subsequent work on both its deoxygenated[12][13] and oxygenated forms.[14][15]

The 310 helix is now known to be the third principal structure to occur in globular proteins, after the α-helix and β-sheet.[16] They are almost always short sections, with nearly 96% containing four or fewer amino acid residues,[17]: 44  appearing in places such as the "corners" where α-helices change direction in the myoglobin structure, for example.[8] Longer sections, in the range of seven to eleven residues, have been observed in the voltage sensor segment of voltage-gated potassium channels in the transmembrane domain of certain helical proteins.[18]

Structure

The amino acids in a 310-helix are arranged in a right-handed helical structure. Each amino acid corresponds to a 120° turn in the helix (i.e., the helix has three residues per turn), and a translation of 2.0 Å (0.20 nm) along the helical axis, and has 10 atoms in the ring formed by making the hydrogen bond.[17]: 39  Most importantly, the N-H group of an amino acid forms a hydrogen bond with the C=O group of the amino acid three residues earlier; this repeated i + 3 → i hydrogen bonding defines a 310-helix. Similar structures include the α-helix (i + 4 → i hydrogen bonding) and the π-helix i + 5 → i hydrogen bonding.[17]: 44–45 [19]

Residues in long 310-helices adopt (φψ) dihedral angles near (−49°, −26°). Many 310-helices in proteins are short, so deviate from these values. More generally, residues in long 310-helices adopt dihedral angles such that the ψ dihedral angle of one residue and the φ dihedral angle of the next residue sum to roughly −75°. For comparison, the sum of the dihedral angles for an α-helix is roughly −105°, whereas that for a π-helix is roughly −125°.[17]: 45 

The general formula for the rotation angle Ω per residue of any polypeptide helix with trans isomers is given by the equation:[17]: 40 

and since Ω = 120° for an ideal 310 helix, it follows that φ and ψ should be related by:

consistent with the observed value of φ + ψ near −75°.[17]: 44 

The dihedral angles in the 310 helix, relative to those of the α helix, could be attributed to the short lengths of these helices – anywhere from 3 to 5 residues long, compared with the 10 to 12 residue lengths of their α-helix contemporaries. 310-helices often arise in transitions, leading to typically short residue lengths that result in deviations in their main-chain torsion angle distributions and thus irregularities. Their hydrogen bond networks are distorted when compared with α-helices, contributing to their instability, though the frequent appearance of the 310-helix in natural proteins demonstrate their importance in transitional structures.[19][20]

Stability

Through research carried out by Mary Karpen, Pieter De Haseth and Kenneth Neet,[21] factors in the partial stability in 310-helices were uncovered. The helices are most noticeably stabilized by an aspartate residue at the nonpolar N-terminus that interacts with the amide group at the helical N-cap. This electrostatic interaction stabilizes the peptide dipoles in a parallel orientation. Much like the contiguous helical hydrogen bonds that stabilize α-helices, high levels of aspartate are just as equally important in the survival of the 310-helix. High frequency of aspartate in both 310-helix and α-helices is indicative of its helix initiation, but at the same time suggests that it favors stabilization of the 310-helix by inhibiting the propagation of α-helices.[21]

See also

References

  1. ^ a b c d Eisenberg, David (2003). "The discovery of the α-helix and β-sheet, the principal structural features of proteins". Proc. Natl. Acad. Sci. U.S.A. 100 (20): 11207–11210. Bibcode:2003PNAS..10011207E. doi:10.1073/pnas.2034522100. PMC 208735. PMID 12966187.
  2. ^ a b Bragg, Lawrence; Kendrew, J. C.; Perutz, M. F. (1950). "Polypeptide chain configurations in crystalline proteins". Proc. R. Soc. A. 203 (1074): 321–357. Bibcode:1950RSPSA.203..321B. doi:10.1098/rspa.1950.0142.
  3. ^ a b Pauling, Linus; Corey, Robert B.; Branson, Herman R. (1951). "The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain". Proc. Natl. Acad. Sci. U.S.A. 34 (4): 205–211. Bibcode:1951PNAS...37..205P. doi:10.1073/pnas.37.4.205. PMC 1063337. PMID 14816373.
  4. ^ Pauling, Linus; Corey, Robert B. (1951). "The Pleated Sheet, A New Layer Configuration of Polypeptide Chains". Proc. Natl. Acad. Sci. U.S.A. 37 (5): 251–256. Bibcode:1951PNAS...37..251P. doi:10.1073/pnas.37.5.251. PMC 1063350. PMID 14834147.
  5. ^ Watson, James D.; Crick, Francis H. C. (1953). "Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid". Nature. 171 (4356): 737–738. Bibcode:1953Natur.171..737W. doi:10.1038/171737a0. PMID 13054692.
  6. ^ a b Perutz, Max F. (1998). I Wish I'd Made You Angry Earlier: Essays on Science, Scientists, and Humanity. Plainview: Cold Spring Harbor Laboratory Press. ISBN 9780879696740.
  7. ^ Perutz, Max F. (1951). "New X-Ray Evidence on the Configuration of Polypeptide Chains: Polypeptide Chains in Poly-γ-benzyl-L-glutamate, Keratin and Hæmoglobin". Nature. 167 (4261): 1053–1054. Bibcode:1951Natur.167.1053P. doi:10.1038/1671053a0. PMID 14843172. S2CID 4186097.
  8. ^ a b Kendrew, J. C.; Bodo, G.; Dintzis, H. M.; Parrish, R. G.; Wyckoff, H.; Phillips, D. C. (1958). "A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis". Nature. 181 (4610): 662–666. Bibcode:1958Natur.181..662K. doi:10.1038/181662a0. PMID 13517261. S2CID 4162786.
  9. ^ Perutz, Max F.; Rossmann, M. G.; Cullis, Ann F.; Muirhead, Hilary; Will, Georg (1960). "Structure of Haemoglobin: A Three-Dimensional Fourier Synthesis at 5.5 Å Resolution, Obtained by X-Ray Analysis". Nature. 185 (4711): 416–422. Bibcode:1960Natur.185..416P. doi:10.1038/185416a0. PMID 18990801. S2CID 4208282.
  10. ^ Perutz, Max F. (1964). "The Hemoglobin Molecule". Sci. Am. 211 (5): 64–76. Bibcode:1964SciAm.211e..64P. doi:10.1038/scientificamerican1164-64. PMID 14224496.
  11. ^ Perutz, Max F. (1997). Science is Not a Quiet Life: Unravelling the Atomic Mechanism of Haemoglobin. London: World Scientific Publishing. ISBN 9789810230579.
  12. ^ Muirhead, Hilary; Cox, Joyce M.; Mazzarella, L.; Perutz, Max F. (1967). "Structure and function of haemoglobin: III. A three-dimensional fourier synthesis of human deoxyhaemoglobin at 5.5 Å resolution". J. Mol. Biol. 28 (1): 117–156. doi:10.1016/S0022-2836(67)80082-2. PMID 6051747.
  13. ^ Bolton, W.; Cox, J. M.; Perutz, M. F. (1968). "Structure and function of haemoglobin: IV. A three-dimensional Fourier synthesis of horse deoxyhaemoglobin at 5.5 Å resolution". J. Mol. Biol. 33 (1): 283–297. doi:10.1016/0022-2836(68)90294-5. PMID 5646648.
  14. ^ Perutz, M. F.; Muirhead, Hilary; Cox, Joyce M.; Goaman, L. C. G.; Mathews, F. S.; McGandy, E. L.; Webb, L. E. (1968). "Three-dimensional Fourier Synthesis of Horse Oxyhaemoglobin at 2.8 Å: X-Ray Analysis". Nature. 219 (5149): 29–32. Bibcode:1968Natur.219..131P. doi:10.1038/219131a0. ISBN 9789814498517. PMID 5659617. S2CID 1383359.
  15. ^ Perutz, M. F.; Muirhead, Hilary; Cox, Joyce M.; Goaman, L. C. G. (1968). "Three-dimensional Fourier Synthesis of Horse Oxyhaemoglobin at 2.8 Å Resolution: The Atomic Model". Nature. 219 (5150): 131–139. Bibcode:1968Natur.219..131P. doi:10.1038/219131a0. ISBN 9789814498517. PMID 5659637. S2CID 1383359.
  16. ^ Tonlolo, Claudio; Benedetti, Ettore (1991). "The polypeptide 310-helix". Trends Biochem. Sci. 16 (9): 350–353. doi:10.1016/0968-0004(91)90142-I. PMID 1949158.
  17. ^ a b c d e f Zorko, Matjaž (2010). "Structural Organization of Proteins". In Langel, Ülo; Cravatt, Benjamin F.; Gräslund, Astrid; von Heijne, Gunnar; Land, Tiit; Niessen, Sherry; Zorko, Matjaž (eds.). Introduction to Peptides and Proteins. Boca Raton: CRC Press. pp. 36–57. ISBN 9781439882047.
  18. ^ Vieira-Pires, Ricardo Simão; Morais-Cabral, João Henrique (2010). "310 helices in channels and other membrane proteins". J. Gen. Physiol. 136 (6): 585–592. doi:10.1085/jgp.201010508. PMC 2995148. PMID 21115694.
  19. ^ a b Armen, Roger; Alonso, Darwin O. V.; Daggett, Valerie (2003). "The role of α-, 310-, and π-helix in helix → coil transitions". Protein Sci. 12 (6): 1145–1157. doi:10.1110/ps.0240103. PMC 2323891. PMID 12761385.
  20. ^ Rohl, Carol A.; Doig, Andrew J. (1996). "Models for the 310-helix/coil, π-helix/coil, and α-helix/310-helix/coil transitions in isolated peptides". Protein Sci. 5 (8): 1687–1696. doi:10.1002/pro.5560050822. PMC 2143481. PMID 8844857.
  21. ^ a b Karpen, Mary E.; De Haseth, Pieter L.; Neet, Kenneth E. (1992). "Differences in the amino acid distributions of 310-helices an α-helices". Protein Sci. 1 (10): 1333–1342. doi:10.1002/pro.5560011013. PMC 2142095. PMID 1303752.

Other readings

Read other articles:

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

 

Pour les articles homonymes, voir Interaction. Les 4 forces fondamentales. Quatre interactions élémentaires sont responsables de tous les phénomènes physiques observés dans l'Univers, chacune se manifestant par une force dite force fondamentale. Ce sont l'interaction nucléaire forte, l'interaction électromagnétique, l'interaction faible et l'interaction gravitationnelle. En physique classique, les lois de la gravitation et de l'électromagnétisme étaient considérées comme axiomes...

 

 

العلاقات البولندية الكيريباتية بولندا كيريباتي   بولندا   كيريباتي تعديل مصدري - تعديل   العلاقات البولندية الكيريباتية هي العلاقات الثنائية التي تجمع بين بولندا وكيريباتي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: و�...

First wife of King Æthelwulf of Wessex and mother of Alfred the Great See also: Osburh of Coventry OsburhEarly 20th century illustration of Osburh reading to her son AlfredSpouseÆthelwulf, King of WessexIssue Æthelstan, King of Kent Æthelswith, Queen of Mercia Æthelbald, King of Wessex Æthelberht, King of Wessex Æthelred I, King of Wessex Alfred, King of the Anglo-Saxons FatherOslac Osburh or Osburga (also Osburga Oslacsdotter) was the first wife of King Æthelwulf of Wessex and mother...

 

 

Istanbul Biennialİstanbul BienaliJenisSeni rupa kontemporerDimulaiPertengahan SeptemberBerakhirPertengahan NovemberFrekuensiSetiapdua tahunLokasiIstanbul, TurkiAcara pertama1987Terakhir diadakan2013Badan pelindungİstanbul Kültür Sanat Vakfı (IKSV)Situs web[http://www.iksv.org/en Bienali Istanbul Internasional adalah sebuah pameran seni rupa kontemporer, yang diadakan setiap dua tahun di Istanbul, Turki, sejak 1987. Biennial tersebut diselenggarakan oleh Yayasan untuk Budaya dan Seni Rupa...

 

 

Vous lisez un « bon article » labellisé en 2008. « Un nouveau superbe clipper partant pour San Francisco », publicité pour le voyage vers la Californie publiée à New York dans les années 1850. La ruée vers l’or en Californie (California gold rush) est une période d'environ huit ans (1848-1856) qui commence en janvier 1848 par suite de la découverte d'or à Sutter's Mill, une scierie appartenant au Suisse Johann August Sutter, près de Coloma, à l'est de Sac...

American college basketball season 1969–70 Illinois Fighting Illini men's basketballConferenceBig Ten ConferenceRecord15–9 (8–6 Big Ten)Head coachHarv SchmidtAssistant coaches Dick Campbell Jim Wright MVPMike PriceCaptains Mike Price Randy Crews Home arenaAssembly HallSeasons← 1968–691970–71 → 1969–70 Big Ten Conference men's basketball standings vte Conf Overall Team W   L   PCT W   L   PCT No. 7 Iowa 14 – 0   1.000 2...

 

 

Hat worn in French Antilles For other uses, see Salako (disambiguation). Salako is a hat from Îles des Saintes (French Antilles). It appeared towards the end of the 19th century. It is made on Terre-de-Bas Island by some last craftsmen who still have the art and the technics of its making.[1] Description Salako is the traditional headgear of people from les Saintes archipelago. Even if its usage is strongly rarefied, it is still worn by some fishermen for whom it is a perfect working...

 

 

Disambiguazione – Se stai cercando la guerra tra l'Italia e l'Etiopia degli anni 1895-1896, vedi Guerra di Abissinia. Guerra d'EtiopiaSoldati italiani analizzano tavole di tiro per l'artiglieriaData3 ottobre 1935 - 5 maggio 1936(0 anni e 215 giorni) LuogoEtiopia Casus belliIncidente di Ual Ual EsitoVittoria italianaAnnessione dell'Etiopia e creazione dell'Africa Orientale Italiana Schieramenti Italia Impero d'Etiopia ComandantiBenito MussoliniFronte nord:Emilio De Bono (fino...

Kashmere Gateकश्मीरी गेटStasiun angkutan cepat di DelhiKoordinat28°40′03″N 77°13′41″E / 28.667489°N 77.228045°E / 28.667489; 77.228045Jalur  Jalur Merah  Jalur KuningJumlah peronSamping (Jalur Merah)Pulau (Jalur Kuning)KonstruksiJenis strukturMelayang (Jalur Merah)Bawah Tanah (Jalur Kuning)Tinggi peron5SejarahDibuka25 Desember 2002Operasi layanan Stasiun sebelumnya   Delhi Metro   Stasiun berikutnya Shastri Parkmenuju...

 

 

Tujuan Pembangunan Berkelanjutan 16MisiMewujudkan masyarakat yang inklusif dan damai dengan berdasarkan pada penghormatan terhadap hak asasi manusia, peraturan hukum, tata pemerintahan yang baik di semua tingkat, serta lembaga yang transparan, efektif, dan akuntabelKomersial?TidakJenis proyekOrganisasi NirlabaLokasiGlobalPendiriPerserikatan Bangsa-BangsaDimulai2015Situs websdgs.un.org Tujuan Pembangunan Berkelanjutan 16 adalah salah satu dari 17 Tujuan Pembangunan Berkelanjutan (SDGs) yang di...

 

 

2020年夏季奥林匹克运动会马来西亚代表團马来西亚国旗IOC編碼MASNOC马来西亚奥林匹克理事会網站olympic.org.my(英文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員30參賽項目10个大项旗手开幕式:李梓嘉和吳柳螢(羽毛球)[1][2]閉幕式:潘德莉拉(跳水)[3]獎牌榜排名第74 金牌 銀牌 銅�...

The following is a list aviation accidents and incidents in the war in Afghanistan. It covers helicopters , fixed-wing aircraft and UAVs. 2021 August 15: During the fall of Kabul, 22 military planes and 24 helicopters of the Afghan Air Force fled over the border to Uzbekistan over the weekend, carrying 585 Afghan personnel,[1] an Afghan Air Force Embraer 314 crashed in Uzbekistan's Surxondaryo Region. Two pilots ejected and landed with parachutes.[2] Initially, the Prosecutor...

 

 

 本表是動態列表,或許永遠不會完結。歡迎您參考可靠來源來查漏補缺。 潛伏於中華民國國軍中的中共間諜列表收錄根據公開資料來源,曾潛伏於中華民國國軍、被中國共產黨聲稱或承認,或者遭中華民國政府調查審判,為中華人民共和國和中國人民解放軍進行間諜行為的人物。以下列表以現今可查知時間為準,正確的間諜活動或洩漏機密時間可能早於或晚於以下所歸�...

 

 

مساعد بن سعود بن عبد العزيز آل سعود معلومات شخصية الميلاد 1922الرياض، مملكة الحجاز ونجد وملحقاتها الوفاة 17 سبتمبر 2012 (90 سنة) الولايات المتحدة مكان الدفن مقبرة العود الجنسية سعودي الأب سعود بن عبد العزيز آل سعود  عائلة آل سعود  الحياة العملية المهنة سياسي،  ودبلوما�...

In the United Kingdom, public holidays are days on which most businesses and non-essential services are closed. Many retail businesses (especially the larger ones) do open on some of the public holidays. There are restrictions on trading on Sundays, Easter Day and Christmas Day in England and Wales and on New Year's Day and Christmas Day in Scotland. Public holidays defined by statute are called bank holidays, but this term can also be used to include common law holidays, which are held by c...

 

 

Building in Telangana, India Warangal Fort Orugallu FortWarangal, Telangana, India View of the Shiva Lingam at the Fort complexWarangal Fort Orugallu FortCoordinates17°57′21″N 79°36′52″E / 17.95583°N 79.61444°E / 17.95583; 79.61444TypeFortSite informationOpen tothe publicYesConditionRuinsSite historyBuilt13th centuryBuilt byPrataparudra IIMusunuri Kapaya NayakaMaterialsStone and mudBattles/warsSiege of Warangal (1310) Siege of Warangal (1318)...

 

 

Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Alex Noerdin – berita...

Norwegian former Nordic combined skier For the Norwegian photographer, see Tom Sandberg (photographer). Tom SandbergTom Sandberg in March, 1978Personal informationBorn6 August 1955 (1955-08-06) (age 68)Mo i Rana, NorwaySportSportNordic combinedClubMo Skilag Medal record Men's Nordic combined Representing  Norway Olympic Games 1984 Sarajevo Individual World Championships 1982 Oslo 15 km individual 1984 Rovaniemi 3 × 10 km team 1982 Oslo 3 × 10 km team Tom Sandberg (born 6 Augu...

 

 

12th Chief Minister of Kerala In this Indian name, the toponymic surname is Pinarayi. It is not a family name, and the person should be referred to by the given name, Vijayan. Pinarayi VijayanVijayan in 202412th Chief Minister of KeralaIncumbentAssumed office 25 May 2016GovernorP. SathasivamArif Mohammad KhanPreceded byOommen Chandy Additional ministries IncumbentAssumed office 25 May 2016Ministry and Departments General Administration All India Services Planning and Economic Affa...