Euclid's Elements gives a geometric construction with Euclidean tools for the solution of the quadratic equation for positive real roots.[5]
c. 300 BC
A geometric construction for the solution of the cubic is sought (doubling the cube problem). It is now well known that the general cubic has no such solution using Euclidean tools.
Algebraic equations are treated in the Chinese mathematics book Jiuzhang suanshu (The Nine Chapters on the Mathematical Art), which contains solutions of linear equations solved using the rule of double false position, geometric solutions of quadratic equations, and the solutions of matrices equivalent to the modern method, to solve systems of simultaneous linear equations.[6]
Greek mathematician Hero of Alexandria, treats algebraic equations in three volumes of mathematics.
c. 200
Hellenistic mathematician Diophantus, who lived in Alexandria and is often considered to be the "father of algebra", writes his famous Arithmetica, a work featuring solutions of algebraic equations and on the theory of numbers.
499
Indian mathematician Aryabhata, in his treatise Aryabhatiya, obtains whole-number solutions to linear equations, describes the general solution of the indeterminate linear equation.[citation needed]
c. 625
Chinese mathematician Wang Xiaotong finds numerical solutions to certain cubic equations.[7]
c. 7th century Dates vary from the 3rd to the 12th centuries.[8]
The Bakhshali Manuscript written in ancient India uses a form of algebraic notation using letters of the alphabet and other signs, and contains cubic and quartic equations, algebraic solutions of linear equations with up to five unknowns, the general algebraic formula for the quadratic equation, and solutions of indeterminate quadratic equations and simultaneous equations.[citation needed]
7th century
Brahmagupta invents the method of solving indeterminate equations of the second degree . He also develops methods for calculations of the motions and places of various planets, their rising and setting, conjunctions, and the calculation of eclipses of the sun and the moon
The Abbasid patrons of learning, al-Mansur, Haroun al-Raschid, and al-Mamun, has Greek, Babylonian, and Indian mathematical and scientific works translated into Arabic and begins a cultural, scientific and mathematical awakening after a century devoid of mathematical achievements.[9]
820
The word algebra is derived from operations described in the treatise written by the Persian mathematician, Muḥammad ibn Mūsā al-Ḵhwārizmī, titled Al-Kitab al-Jabr wa-l-Muqabala (meaning "The Compendious Book on Calculation by Completion and Balancing") on the systematic solution of linear and quadratic equations. Al-Khwarizmi is often considered the "father of algebra", for founding algebra as an independent discipline and for introducing the methods of "reduction" and "balancing" (the transposition of subtracted terms to the other side of an equation, that is, the cancellation of like terms on opposite sides of the equation) which was what he originally used the term al-jabr to refer to.[10] His algebra was also no longer concerned "with a series of problems to be resolved, but an exposition which starts with primitive terms in which the combinations must give all possible prototypes for equations, which henceforward explicitly constitute the true object of study." He also studied an equation for its own sake and "in a generic manner, insofar as it does not simply emerge in the course of solving a problem, but is specifically called on to define an infinite class of problems."[11]
c. 990
Persian mathematician Al-Karaji (also known as al-Karkhi), in his treatise Al-Fakhri, further develops algebra by extending Al-Khwarizmi's methodology to incorporate integral powers and integral roots of unknown quantities. He replaces geometrical operations of algebra with modern arithmetical operations, and defines the monomials x, x2, x3, .. and 1/x, 1/x2, 1/x3, .. and gives rules for the products of any two of these.[12] He also discovers the first numerical solution to equations of the form ax2n + bxn = c.[13] Al-Karaji is also regarded as the first person to free algebra from geometrical operations and replace them with the type of arithmetic operations which are at the core of algebra today. His work on algebra and polynomials, gave the rules for arithmetic operations to manipulate polynomials. The historian of mathematics F. Woepcke, in Extrait du Fakhri, traité d'Algèbre par Abou Bekr Mohammed Ben Alhacan Alkarkhi (Paris, 1853), praised Al-Karaji for being "the first who introduced the theory of algebraic calculus". Stemming from this, Al-Karaji investigated binomial coefficients and Pascal's triangle.[12]
895
Thabit ibn Qurra: the only surviving fragment of his original work contains a chapter on the solution and properties of cubic equations. He also generalized the Pythagorean theorem, and discovered the theorem by which pairs of amicable numbers can be found, (i.e., two numbers such that each is the sum of the proper divisors of the other).
953
Al-Karaji is the “first person to completely free algebra from geometrical operations and to replace them with the arithmetical type of operations which are at the core of algebra today. He [is] first to define the monomials, , , … and , , , … and to give rules for products of any two of these. He start[s] a school of algebra which flourished for several hundreds of years”. He also discovers the binomial theorem for integerexponents, which “was a major factor in the development of numerical analysis based on the decimal system.”
Chinese mathematician Jia Xian finds numerical solutions of polynomial equations of arbitrary degree.[14]
1070
Omar Khayyám begins to write Treatise on Demonstration of Problems of Algebra and classifies cubic equations.
1072
Persian mathematician Omar Khayyám gives a complete classification of cubic equations with positive roots and gives general geometric solutions to these equations found by means of intersecting conic sections.[15]
12th century
Bhaskara Acharya writes the “Bijaganita” (“Algebra”), which is the first text that recognizes that a positive number has two square roots
1130
Al-Samawal gives a definition of algebra: “[it is concerned] with operating on unknowns using all the arithmetical tools, in the same way as the arithmetician operates on the known.”[16]
c. 1200
Sharaf al-Dīn al-Tūsī (1135–1213) writes the Al-Mu'adalat (Treatise on Equations), which deals with eight types of cubic equations with positive solutions and five types of cubic equations which may not have positive solutions. He uses what would later be known as the "Ruffini–Horner method" to numerically approximate the root of a cubic equation. He also develops the concepts of the maxima and minima of curves in order to solve cubic equations which may not have positive solutions.[17] He understands the importance of the discriminant of the cubic equation and uses an early version of Cardano's formula[18] to find algebraic solutions to certain types of cubic equations. Some scholars, such as Roshdi Rashed, argue that Sharaf al-Din discovered the derivative of cubic polynomials and realized its significance, while other scholars connect his solution to the ideas of Euclid and Archimedes.[19]
Chinese mathematician Zhu Shijie deals with polynomial algebra, solves quadratic equations, simultaneous equations and equations with up to four unknowns, and numerically solves some quartic, quintic and higher-order polynomial equations.[21]
c. 1400
Indian mathematician Madhava of Sangamagrama documents infinite series approximations of trigonometry functions.[22]
15th century
Nilakantha Somayaji, a Kerala school mathematician, writes the “Aryabhatiya Bhasya”, which contains work on infinite-series expansions, problems of algebra, and spherical geometry
Girolamo Cardano publishes Ars magna -The great art which gives del Ferro's solution to the cubic equation[24] and Lodovico Ferrari's solution to the quartic equation.
1572
Rafael Bombelli recognizes the complex roots of the cubic and improves current notation.[25]
1591
Franciscus Vieta develops improved symbolic notation for various powers of an unknown and uses vowels for unknowns and consonants for constants in In artem analyticam isagoge.[citation needed]
^Archibald, Raymond Clare (December 1936). "Babylonian Mathematics". Isis. 26 (1). University of Chicago Press: 63–81. doi:10.1086/347127. JSTOR225054. See also "StrKT 07 (P414660)". Cuneiform Digital Library Initiative., Mathematical tablet excavated in Uruk (mod. Warka), dated to the Old Babylonian (ca. 1900–1600 BC) period and now kept in Bibliothèque Nationale et Universitaire de Strasbourg, Strasbourg, France, museum number BNUS 363.
^Hayashi (2005), p. 371. "The dates so far proposed for the Bakhshali work vary from the third to the twelfth centuries AD, but a recently made comparative study has shown many similarities, particularly in the style of exposition and terminology, between Bakhshalī work and Bhāskara I's commentary on the Āryabhatīya. This seems to indicate that both works belong to nearly the same period, although this does not deny the possibility that some of the rules and examples in the Bakhshālī work date from anterior periods."
^Boyer (1991), "The Arabic Hegemony" p. 227. "The first century of the Muslim empire had been devoid of scientific achievement. This period (from about 650 to 750) had been, in fact, perhaps the nadir in the development of mathematics, for the Arabs had not yet achieved intellectual drive, and concern for learning in other parts of the world had faded. Had it not been for the sudden cultural awakening in Islam during the second half of the eighth century, considerably more of ancient science and mathematics would have been lost. To Baghdad at that time were called scholars from Syria, Iran, and Mesopotamia, including Jews and Nestorian Christians; under three great Abbasid patrons of learning – al-Mansur, Haroun al-Raschid, and al-Mamun – The city became a new Alexandria. It was during the caliphate of al-Mamun (809–833), however, that the Arabs fully indulged their passion for translation. The caliph is said to have had a dream in which Aristotle appeared, and as a consequence al-Mamun determined to have Arabic versions made of all the Greek works that he could lay his hands on, including Ptolemy's Almagest and a complete version of Euclid's Elements. From the Byzantine Empire, with which the Arabs maintained an uneasy peace, Greek manuscripts were obtained through peace treaties. Al-Mamun established at Baghdad a "House of Wisdom" (Bait al-hikma) comparable to the ancient Museum at Alexandria."
^Boyer (1991), "The Arabic Hegemony" p. 229. "It is not certain just what the terms al-jabr and muqabalah mean, but the usual interpretation is similar to that implied in the translation above. The word al-jabr presumably meant something like "restoration" or "completion" and seems to refer to the transposition of subtracted terms to the other side of an equation; the word muqabalah is said to refer to "reduction" or "balancing" - that is, the cancellation of like terms on opposite sides of the equation."
^Boyer (1991), "The Arabic Hegemony" p. 239. "Abu'l Wefa was a capable algebraist aws well as a trionometer. [..] His successor al-Karkhi evidently used this translation to become an Arabic disciple of Diophantus - but without Diophantine analysis! [..] In particular, to al-Karaji is attributed the first numerical solution of equations of the form ax2n + bxn = c (only equations with positive roots were considered)."
^Boyer (1991), "The Arabic Hegemony" pp. 241–242. "Omar Khayyám (ca. 1050–1123), the "tent-maker," wrote an Algebra that went beyond that of al-Khwarizmi to include equations of third degree. Like his Arab predecessors, Omar Khayyám provided for quadratic equations both arithmetic and geometric solutions; for general cubic equations, he believed (mistakenly, as the sixteenth century later showed), arithmetic solutions were impossible; hence he gave only geometric solutions. The scheme of using intersecting conics to solve cubics had been used earlier by Menaechmus, Archimedes, and Alhazan, but Omar Khayyám took the praiseworthy step of generalizing the method to cover all third-degree equations (having positive roots)."
^Rashed, Roshdi; Armstrong, Angela (1994). The Development of Arabic Mathematics. Springer. pp. 342–3. ISBN0-7923-2565-6.
^Berggren, J. L.; Al-Tūsī, Sharaf Al-Dīn; Rashed, Roshdi; Al-Tusi, Sharaf Al-Din (1990). "Innovation and Tradition in Sharaf al-Din al-Tusi's Muadalat". Journal of the American Oriental Society. 110 (2): 304–9. doi:10.2307/604533. JSTOR604533. Rashed has argued that Sharaf al-Din discovered the derivative of cubic polynomials and realized its significance for investigating conditions under which cubic equations were solvable; however, other scholars have suggested quite difference explanations of Sharaf al-Din's thinking, which connect it with mathematics found in Euclid or Archimedes.
^Boyer (1991), "Prelude to Modern Mathematics" p. 306. "Harriot knew of relationships between roots and coefficients and between roots and factors, but like Viète he was hampered by failure to take note of negative and imaginary roots. In notation, however, he advanced the use of symbolism, being responsible for the signs > and < for 'greater than' and 'less than.'"
Hayashi, Takao (2005). "Indian Mathematics". In Flood, Gavin (ed.). The Blackwell Companion to Hinduism. Oxford: Basil Blackwell. pp. 360–375. ISBN978-1-4051-3251-0.