Periodic graph (geometry)

A Euclidean graph (a graph embedded in some Euclidean space) is periodic if there exists a basis of that Euclidean space whose corresponding translations induce symmetries of that graph (i.e., application of any such translation to the graph embedded in the Euclidean space leaves the graph unchanged). Equivalently, a periodic Euclidean graph is a periodic realization of an abelian covering graph over a finite graph.[1][2] A Euclidean graph is uniformly discrete if there is a minimal distance between any two vertices. Periodic graphs are closely related to tessellations of space (or honeycombs) and the geometry of their symmetry groups, hence to geometric group theory, as well as to discrete geometry and the theory of polytopes, and similar areas.

Much of the effort in periodic graphs is motivated by applications to natural science and engineering, particularly of three-dimensional crystal nets to crystal engineering, crystal prediction (design), and modeling crystal behavior. Periodic graphs have also been studied in modeling very-large-scale integration (VLSI) circuits.[3]

Basic formulation

A Euclidean graph is a pair (VE), where V is a set of points (sometimes called vertices or nodes) and E is a set of edges (sometimes called bonds), where each edge joins two vertices. While an edge connecting two vertices u and v is usually interpreted as the set { u, v }, an edge is sometimes interpreted as the line segment connecting u and v so that the resulting structure is a CW complex. There is a tendency in the polyhedral and chemical literature to refer to geometric graphs as nets (contrast with polyhedral nets), and the nomenclature in the chemical literature differs from that of graph theory.[4] Most of the literature focuses on periodic graphs that are uniformly discrete in that there exists e > 0 such that for any two distinct vertices, their distance apart is |uv| > e.

From the mathematical view, a Euclidean periodic graph is a realization of an infinite-fold abelian covering graph over a finite graph.

Obtaining periodicity

The identification and classification of the crystallographic space groups took much of the nineteenth century, and the confirmation of the completeness of the list was finished by the theorems of Evgraf Fedorov and Arthur Schoenflies.[5] The problem was generalized in David Hilbert's eighteenth Problem, and the Fedorov–Schoenflies Theorem was generalized to higher dimensions by Ludwig Bieberbach.[6]

The Fedorov–Schoenflies theorem asserts the following. Suppose that one is given a Euclidean graph in 3-space such that the following are true:

  1. It is uniformly discrete in that there exists e > 0 such that for any two distinct vertices, their distance apart is |uv| > e.
  2. It fills space in the sense that for any plane in 3-space, there exist vertices of the graph on both sides of the plane.
  3. Each vertex is of finite degree or valency.
  4. There are finitely many orbits of vertices under the symmetry group of the geometric graph.

Then the Euclidean graph is periodic in that the vectors of translations in its symmetry group span the underlying Euclidean space, and its symmetry group is a crystallographic space group.

The interpretation in science and engineering is that since a Euclidean graph representing a material extending through space must satisfy conditions (1), (2), and (3), non-crystalline substances from quasicrystals to glasses must violate (4). However, in the last quarter century, quasicrystals have been recognized to share sufficiently many chemical and physical properties with crystals that there is a tendency to classify quasicrystals as "crystals" and to adjust the definition of "crystal" accordingly.[7]

Mathematics and computation

Much of the theoretical investigation of periodic graphs has focused on the problems of generating and classifying them.

Classification problems

Most of the work on classification problems has focused on three dimensions, particularly on the classification of crystal nets, i.e., of periodic graphs that could serve as descriptions or designs for placement of atoms or molecular objects, with bonds indicated by edges, in a crystal. One of the more popular classification criteria is graph isomorphism, not to be confused with crystallographic isomorphism. Two periodic graphs are often called topologically equivalent if they are isomorphic, although not necessarily homotopic. Even though the graph isomorphism problem is polynomial time reducible to crystal net topological equivalence (making topological equivalence a candidate for being "computationally intractable" in the sense of not being polynomial time computable), a crystal net is generally regarded as novel if and only if no topologically equivalent net is known. This has focused attention on topological invariants.

One invariant is the array of minimal cycles (often called rings in the chemistry literature) arrayed about generic vertices and represented in a Schläfli symbol. The cycles of a crystal net are related[8] to another invariant, that of the coordination sequence (or shell map in topology[9]), which is defined as follows. First, a distance sequence from a vertex v in a graph is the sequence n1, n2, n3, ..., where ni is the number of vertices of distance i from v. The coordination sequence is the sequence s1, s2, s3, ..., where si is the weighted mean of the i-th entries of the distance sequences of vertices of the (orbits of the) crystal nets, where the weights are the asymptotic proportion of vertices of each orbit. The cumulative sums of the coordination sequence is denoted the topological density, and the sum of the first ten terms (plus 1 for the zero-th term) – often denoted TD10 – is a standard search term in crystal net databases. See[10] [11] for a mathematical aspect of topological density which is closely related to the large deviation property of simple random walks.

Another invariant arises from the relationship between tessellations and Euclidean graphs. If we regard a tessellation as an assembly of (possibly polyhedral) solid regions, (possibly polygonal) faces, (possibly linear) curves, and vertices – that is, as a CW-complex – then the curves and vertices form a Euclidean graph (or 1-skeleton) of the tessellation. (In addition, the adjacency graph of the tiles induces another Euclidean graph.) If there are finitely many prototiles in the tessellation, and the tessellation is periodic, then the resulting Euclidean graph will be periodic. Going in the reverse direction, the prototiles of a tessellation whose 1-skeleton is (topologically equivalent to) the given periodic graph, one has another invariant, and it is this invariant that is computed by the computer program TOPOS.[12]

Generating periodic graphs

There are several extant periodic graph enumeration algorithms, including modifying extant nets to produce new ones,[13] but there appear to be two major classes of enumerators.

One of the major systematic crystal net enumeration algorithms extant[14] is based on the representation of tessellations by a generalization of the Schläfli symbol by Boris Delauney and Andreas Dress, by which any tessellation (of any dimension) may be represented by a finite structure,[15] which we may call a Dress–Delaney symbol. Any effective enumerator of Dress–Delaney symbols can effectively enumerate those periodic nets that correspond to tessellations. The three-dimensional Dress–Delaney symbol enumerator of Delgado-Friedrichs et al. has predicted several novel crystal nets that were later synthesized.[16] Meanwhile, a two-dimensional Dress–Delaney enumerator generating reticulations of two-dimensional hyperbolic space that is surgically dissected and wrapped around a triply periodic minimal surface such as the Gyroid, Diamond or Primitive, has generated many novel crystal nets.[17] [18]

Another extant enumerator is currently focused on generating plausible crystal nets of zeolites. The extension of the symmetry group to 3-space permits the characterization of a fundamental domain (or region) of 3-space, whose intersection with the net induces a subgraph which, in general position, will have one vertex from each orbit of vertices. This subgraph may or may not be connected, and if a vertex lies on an axis of rotation or some other fixed point of some symmetry of the net, the vertex may necessarily lie on the boundary of any fundamental region. In this case, the net may be generated by applying the symmetry group to the subgraph in the fundamental region.[19] Other programs have been developed that similarly generate copies of an initial fragment and glue them into a periodic graph[20]

See also

References

  1. ^ Sunada, T. (2012), "Lecture on topological crystallography", Japan. J. Math., 7: 1–39, doi:10.1007/s11537-012-1144-4, S2CID 255312584
  2. ^ Sunada, T. (2012), Topological Crystallography With a View Towards Discrete Geometric Analysis, Surveys and Tutorials in the Applied Mathematical Sciences, vol. 6, Springer
  3. ^ Cohen, E.; Megiddo, N. (1991), "Recognizing properties of periodic graphs", Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift (PDF), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 135–146, doi:10.1090/dimacs/004/10, ISBN 9780821865934, retrieved August 15, 2010
  4. ^ Delgado-Friedrichs, O.; O’Keeffe, M. (2005), "Crystal nets as graphs: Terminology and definitions", Journal of Solid State Chemistry, 178 (8): 2480–2485, Bibcode:2005JSSCh.178.2480D, doi:10.1016/j.jssc.2005.06.011
  5. ^ Senechal, M. (1990), "A brief history of geometrical crystallography", in Lima-de-Faria, J. (ed.), Historical Atlas of Crystallography, Kluwer, pp. 43–59
  6. ^ Vinberg, E. B.; Shvartsman, O. V. (1993), "Discrete Groups of Motions of Spaces of Constant Curvature", in Vinberg, E. B. (ed.), Geometry II: Spaces of Constant Curvature, Springer-Verlag
  7. ^ Senechal, M. (1995), Quasicrystals and Geometry, Cambridge U. Pr., p. 27
  8. ^ Eon, J. G. (2004), "Topological density of nets: a direct calculation", Acta Crystallogr. A, 60 (Pt 1): 7–18, Bibcode:2004AcCrA..60....7E, doi:10.1107/s0108767303022037, PMID 14691323.
  9. ^ Aste, T. (1999), "The Shell Map", in Sadoc, J. F.; Rivier, N. (eds.), THE SHELL MAP: The structure of froths through a dynamical map, Foams and Emulsions, Kluwer, pp. 497–510, arXiv:cond-mat/9803183, Bibcode:1998cond.mat..3183A
  10. ^ M. Kotani and T. Sunada "Geometric aspects of large deviations for random walks on crystal lattices" In: Microlocal Analysis and Complex Fourier Analysis (T. Kawai and K. Fujita, Ed.), World Scientific, 2002, pp. 215–237.
  11. ^ Kotani, M.; Sunada, T. (2006), "Large deviation and the tangent cone at infinity of a crystal lattice", Math. Z., 254 (4): 837–870, doi:10.1007/s00209-006-0951-9, S2CID 122531716
  12. ^ Blatov, V. A.; Proserpio, D. M., TOPOS Program package for topological analysis of crystal structures, retrieved August 15, 2010
  13. ^ Earl, D. J.; Deem, M. W. (2006), "Toward a Database of Hypothetical Zeolite Structures", Ind. Eng. Chem. Res., 45 (16): 5449–5454, doi:10.1021/ie0510728, S2CID 40620797
  14. ^ Delgado Friedrichs, O.; Dress, A. W. M.; Huson, D. H.; Klinowski, J.; Mackay, A. L. (12 Aug 1999), "Systematic enumeration of crystalline networks", Nature, 400 (6745): 644–647, Bibcode:1999Natur.400..644D, doi:10.1038/23210, S2CID 4388277.
  15. ^ Dress, A.; Delgado Friedrichs, O.; Huson, D. (1995), "An algorithmic approach to tilings", in Charles J., Colbourn; Ebadollah S., Mahmoodian (eds.), Combinatorics Advances: Papers from the Twenty-fifth Annual Iranian Mathematics Conference (AIMC25) held at Sharif University of Technology, Tehran, March 28–31, 1994, Mathematics and its Applications, vol. 329, Kluwer, pp. 111–119, doi:10.1007/978-1-4613-3554-2_7, ISBN 978-1-4613-3556-6
  16. ^ Nouar, Farid; Eubank, Jarrod F.; Bousquet, Till; Wojtas, Lukasz; Zaworotko, Michael J.; Eddaoudi, Mohamed (2008), "Supermolecular Building Blocks (SBBs) for the Design and Synthesis of Highly Porous Metal-Organic Frameworks", Journal of the American Chemical Society, 130 (6): 1833–1835, doi:10.1021/ja710123s, PMID 18205363
  17. ^ Ramsden, S.J.; Robins, V.; Hyde, S. (2009), "3D euclidean nets from 2D hyperbolic tilings: Kaleidoscopic examples", Acta Crystallogr. A, 65 (Pt 2): 81–108, Bibcode:2009AcCrA..65...81R, doi:10.1107/S0108767308040592, PMID 19225190.
  18. ^ EPINET: Euclidean Patterns in Non-Euclidean Tilings, retrieved January 30, 2013
  19. ^ Treacy, M.M. J.; Rivin, I.; Balkovsky, E.; Randall, K. H.; Foster, M. D. (2004), "Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs" (PDF), Microporous and Mesoporous Materials, 74 (1–3): 121–132, doi:10.1016/j.micromeso.2004.06.013, retrieved August 15, 2010.
  20. ^ LeBail, A. (2005), "Inorganic structure prediction with GRINSP", J. Appl. Crystallogr., 38 (2): 389–395, doi:10.1107/S0021889805002384

Further reading

  • Kazami, T.; Uchiyama, K. (2008), "Random walks on periodic graphs", Transactions of the American Mathematical Society, 360 (11): 6065–6087, doi:10.1090/S0002-9947-08-04451-6.

Read other articles:

Tropaeum Romawi Tropaion (bahasa Yunani: τρόπαιον, bahasa Latin: tropaeum), yang berasal dari kata Inggris, trofi, adalah sebuah monumen yang didirikan untuk memperingati kemenangan atas musuh oleh Bahasa Yunani Kuno dan kemudian, oleh Romawi. Baju zirah musuh yang kalah akan digantung di atas monumen. Awalnya, lokasi monumen adalah medan perang tempat berlangsungnya peringatan kemenangan. Galeria Pemandangan Tropaeum di Tropaeum Alpium dengan laki-laki di sebelah kiri dan per...

 

 

Le Sserafim discographyLe Sserafim in 2022Studio albums1EPs3Singles6Promotional singles3 South Korean girl group Le Sserafim has released one studio album, three extended plays, six singles, and three promotional singles. The group made their debut with the extended play Fearless, which sold more than 175,000 copies on its first day of release, breaking the record for the highest single-day sales for the debut album of a female K-pop act.[1] The EP went on to receive a 2× platinum c...

 

 

Iyad bin Amin Madani Sekretaris Jenderal Organisasi Kerjasama Islam ke-10Masa jabatan31 Januari 2014 – November 2016 PendahuluEkmeleddin İhsanoğluPenggantiYusuf Al-UtsaiminMenteri Kebudayaan dan Informatika Arab SaudiMasa jabatan14 Februari 2005 – 14 Februari 2009Perdana MenteriRaja Fahd Raja Abdullah PendahuluOffice establishedPenggantiAbdulaziz KhojaMenteri Haji Arab SaudiMasa jabatan2 Maret 1999 – 14 Februari 2005Perdana MenteriRaja Fahd PendahuluMahmud M...

Juliana AwadaIbu Negara pada Desember, 2018 Ibu Negara ArgentinaPetahanaMulai menjabat 10 December 2015PresidenMauricio Macri PendahuluNéstor Kirchneras First GentlemanPenggantiPetahanaIbu Negara Bagian Buenos AiresMasa jabatan16 November 2010 – 10 Desember 2015 PendahuluEva PíccoloPenggantiBárbara Diez Informasi pribadiLahirMaría Juliana Awada3 April 1974 (umur 49)Villa Ballester, ArgentinaKebangsaanArgentinaPartai politikProposal RepublikanSuami/istriGustavo Capello ...

 

 

Confederate States Navy gunboat Ship's engines and lower portion of the after hull, photographed following recovery in the vicinity of Columbus, Georgia, circa the early or middle 1960s History Confederate States NameChattahoochee Laid downSaffold, Georgia In serviceFebruary 1863 FateScuttled 17 April 1865, stern raised and put on display in 1963 General characteristics Length150 ft (46 m) Beam25 ft (7.6 m) Draft8 ft (2.4 m) Speed12 knots (22 km/h; 14 m...

 

 

2018 Sri Lankan filmTawume Iskole ටවුමේ ඉස්කෝලේpromotional posterDirected bySunil PremaratneWritten bySunil PremaratneProduced byEyon FilmsStarringBimal Jayakody Tharuka Wanniarachchi Kumara ThirimaduraCinematographyBuddhika MangalaEdited byAnura BandaraMusic byDarshana WickramatungaDistributed byEAP TheatersRelease date20 December 2018CountrySri LankaLanguageSinhala Tawume Iskole (The Town School) (Sinhala: ටවුමේ ඉස්කෝලේ) is a 2018 Sri Lankan S...

Pour les articles homonymes, voir Dubau. Cet article est une ébauche concernant un coureur cycliste français. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Pour plus d’informations, voyez le projet cyclisme. Joshua DubauInformationsNaissance 4 juin 1996 (27 ans)ReimsNationalité françaiseÉquipe actuelle Van Rysel CX Racing TeamSpécialité Cyclo-cross, VTT cross-countryÉquipes amateurs ?-2016AC Bazancourt-Reims2017-2022Peltrax-CS Dammarie-lès-Lys202...

 

 

Daidalos membuat sayap untuknya dan putranya Ikaros, ilustrasi berdasarkan relief Romawi di Villa Albani, Roma (Meyers Konversationslexikon, 1888). Dalam mitologi Yunani, Daidalos (Yunani: Δαίδαλος, Etruska: Taitale) adalah seorang penemu, seniman, pematung, desainer, arsitek, dan perajin yang ternama. Patung-patung buatannya bahkan tampak seperti hidup.[1] Ayahnya kemungkinan adalah Metion,[2] Eupalamos[3][4] atau Palamaon.[5] Ibu Daidalos ...

 

 

Artikel ini sedang dalam perubahan besar untuk sementara waktu.Untuk menghindari konflik penyuntingan, dimohon jangan melakukan penyuntingan selama pesan ini ditampilkan.Halaman ini terakhir disunting oleh AABot (Kontrib • Log) 78 hari 1427 menit lalu. Pesan ini dapat dihapus jika halaman ini sudah tidak disunting dalam beberapa jam. Jika Anda adalah penyunting yang menambahkan templat ini, harap diingat untuk menghapusnya setelah selesai atau menggantikannya dengan {{Under constr...

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

 

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

 

Extinct genus of dinosaurs ChangmaornisTemporal range: Early Cretaceous Holotype Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Clade: Dinosauria Clade: Saurischia Clade: Theropoda Clade: Avialae Clade: Ornithuromorpha Genus: †ChangmaornisWang et al., 2013 Type species †Changmaornis houiWang et al., 2013 Changmaornis is an extinct genus of basal ornithuromorph dinosaur known from the Early Cretaceous Xiagou Formation of Changma Basin, Gansu Province of nort...

Sanskrit scripture, One of major eighteen Puranas Brahma Vaivarta PuranaPainting of Radha KrishnaInformationReligionHinduismAuthorVyasaLanguageSanskritChapters276Verses18,000 Part of a series onHindu scriptures and texts Shruti Smriti List Vedas Rigveda Samaveda Yajurveda Atharvaveda Divisions Samhita Brahmana Aranyaka Upanishads UpanishadsRig vedic Aitareya Kaushitaki Sama vedic Chandogya Kena Yajur vedic Brihadaranyaka Isha Taittiriya Katha Shvetashvatara Maitri Atharva vedic Mundaka Manduk...

 

 

伍小平出生 (1938-02-17) 1938年2月17日(86歲) 中華民國天津市国籍 中华人民共和国籍贯江苏武进母校北京大学职业实验力学家 伍小平(1938年2月17日—),中国女实验力学家。 生平 1938年生于天津,原籍江苏武进。1960年毕业于北京大学数学力学系力学专业。中国科学技术大学教授、应用力学研究所所长。1997年当选为中国科学院院士。[1] 参考文献 ^ 中国科学院学�...

 

 

Brinji jawa Ixos virescens Status konservasiRisiko rendahIUCN103823071 TaksonomiKelasAvesOrdoEupasseresFamiliPycnonotidaeGenusIxosSpesiesIxos virescens Temminck, 1825 Tipe taksonomiIxos Tata namaSinonim takson Hypsipetes virescens (Temminck, 1825) (but lihat teks) Brinji jawa (Ixos virescens) adalah spesies burung pengicau dari famili bulbul. Burung ini merupakan tipe spesies genus Ixos.[1] Bulbul sunda merupakan burung endemik Indonesia yang ditemukan di Sumatra dan Jawa pada habitat...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Great Depression in France – news · newspapers · books · scholar · JSTOR (July 2020) (Learn how and when to remove this message) Great Depression1931–1939Evolution of the gross domestic product in several countries between 1929 and 1939LocationFranceChronolo...

 

 

English businessman and writer (1963–2024) This article is about the English writer born in 1963. For his great-uncle, Alexander Raban Waugh (1898–1981), novelist, see Alec Waugh. Alexander WaughWaugh in 2019BornAlexander Evelyn Michael Waugh(1963-12-30)30 December 1963London, EnglandDied22 July 2024(2024-07-22) (aged 60)Milverton, Somerset, EnglandOccupationWriterAlma materUniversity of ManchesterSpouse Eliza Chancellor ​(m. 1990)​Children3ParentsAu...

 

 

Cet article est une ébauche concernant une commune de l’Aisne. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Le bandeau {{ébauche}} peut être enlevé et l’article évalué comme étant au stade « Bon début » quand il comporte assez de renseignements encyclopédiques concernant la commune. Si vous avez un doute, l’atelier de lecture du projet Communes de France est à votre disposition pour vous aider. Consultez également la page d’aide �...

Painting by Nicolas Poussin This article is about the painting by Nicolas Poussin. For the painting by Guercino, see Et in Arcadia ego (Guercino). For the Star Trek episode, see Et in Arcadia Ego (Star Trek: Picard). Et in Arcadia egoLes Bergers d'ArcadieArtistNicolas PoussinYear1637–1638Mediumoil on canvasDimensions85 cm × 121 cm (34.25 in × 47.24 in)LocationMusée du Louvre, Paris Et in Arcadia ego (also known as Les bergers d'Arcadie or The Arc...

 

 

Brazilian Naval AviationAviação Naval BrasileiraActive1916–1941; 1952–present[a]Country BrazilTypeNaval aviationSize3,539 personnel (2022)[1]76 aircraft (2022)[1]Part of Brazilian NavyCommand HQSão Pedro da AldeiaCommandersCommander of the NavyFleet Admiral Marcos OlsenCommander of the Aeronaval ForceRear Admiral Augusto José da Silva Fonseca JuniorInsigniaRoundelAircraft flownAttackA-4 SkyhawkHelicopterSH-3 Sea King AS-332 Super Puma Super Lynx ...