Hypohamiltonian graph

A hypohamiltonian graph constructed by Lindgren (1967).

In the mathematical field of graph theory, a graph G is said to be hypohamiltonian if G itself does not have a Hamiltonian cycle but every graph formed by removing a single vertex from G is Hamiltonian.

History

Hypohamiltonian graphs were first studied by Sousselier (1963). Lindgren (1967) cites Gaudin, Herz & Rossi (1964) and Busacker & Saaty (1965) as additional early papers on the subject; another early work is by Herz, Duby & Vigué (1967).

Grötschel (1980) sums up much of the research in this area with the following sentence: “The articles dealing with those graphs ... usually exhibit new classes of hypohamiltonian or hypotraceable graphs showing that for certain orders n such graphs indeed exist or that they possess strange and unexpected properties.”

Applications

Hypohamiltonian graphs arise in integer programming solutions to the traveling salesman problem: certain kinds of hypohamiltonian graphs define facets of the traveling salesman polytope, a shape defined as the convex hull of the set of possible solutions to the traveling salesman problem, and these facets may be used in cutting-plane methods for solving the problem.[1] Grötschel (1980) observes that the computational complexity of determining whether a graph is hypohamiltonian, although unknown, is likely to be high, making it difficult to find facets of these types except for those defined by small hypohamiltonian graphs; fortunately, the smallest graphs lead to the strongest inequalities for this application.[2]

Concepts closely related to hypohamiltonicity have also been used by Park, Lim & Kim (2007) to measure the fault tolerance of network topologies for parallel computing.

Properties

Every hypohamiltonian graph must be 3-vertex-connected, as the removal of any two vertices leaves a Hamiltonian path, which is connected. There exist n-vertex hypohamiltonian graphs in which the maximum degree is n/2, and in which there are approximately n2/4 edges.[3]

Thomassen's (1974b) girth-3 hypohamiltonian graph.

Herz, Duby & Vigué (1967) conjectured that every hypohamiltonian graph has girth 5 or more, but this was disproved by Thomassen (1974b), who found examples with girth 3 and 4. For some time it was unknown whether a hypohamiltonian graph could be planar, but several examples are now known,[4] the smallest of which has 40 vertices.[5] Every planar hypohamiltonian graph has at least one vertex with only three incident edges.[6]

If a 3-regular graph is Hamiltonian, its edges can be colored with three colors: use alternating colors for the edges on the Hamiltonian cycle (which must have even length by the handshaking lemma) and a third color for all remaining edges. Therefore, all snarks, bridgeless cubic graphs that require four edge colors, must be non-Hamiltonian, and many known snarks are hypohamiltonian. Every hypohamiltonian snark is bicritical: removing any two vertices leaves a subgraph the edges of which can be colored with only three colors.[7] A 3-coloring of this subgraph can be simply described: after removing one vertex, the remaining vertices contain a Hamiltonian cycle. After removing a second vertex, this cycle becomes a path, the edges of which may be colored by alternating between two colors. The remaining edges form a matching and may be colored with a third color.

The color classes of any 3-coloring of the edges of a 3-regular graph form three matchings such that each edge belongs to exactly one of the matchings. Hypohamiltonian snarks do not have a partition into matchings of this type, but Häggkvist (2007) conjectures that the edges of any hypohamiltonian snark may be used to form six matchings such that each edge belongs to exactly two of the matchings. This is a special case of the Berge–Fulkerson conjecture that any snark has six matchings with this property.

Hypohamiltonian graphs cannot be bipartite: in a bipartite graph, a vertex can only be deleted to form a Hamiltonian subgraph if it belongs to the larger of the graph's two color classes. However, every bipartite graph occurs as an induced subgraph of some hypohamiltonian graph.[8]

Examples

The smallest hypohamiltonian graph is the Petersen graph (Herz, Duby & Vigué 1967). More generally, the generalized Petersen graph GP(n,2) is hypohamiltonian when n is congruent to 5 modulo 6;[9] the Petersen graph is the instance of this construction with n = 5.

Lindgren (1967) found another infinite class of hypohamiltonian graphs in which the number of vertices is 4 mod 6. Lindgren's construction consists of a cycle of length 3 mod 6 and a single central vertex; the central vertex is connected to every third vertex of the cycle by edges he calls spokes, and the vertices two positions away from each spoke endpoint are connected to each other. Again, the smallest instance of Lindgren's construction is the Petersen graph.

Additional infinite families are given by Bondy (1972), Doyen & van Diest (1975), and Gutt (1977).

Enumeration

Václav Chvátal proved in 1973 that for all sufficiently large n there exists a hypohamiltonian graph with n vertices. Taking into account subsequent discoveries,[10] “sufficiently large” is now known to mean that such graphs exist for all n ≥ 18. A complete list of hypohamiltonian graphs with at most 17 vertices is known:[11] they are the 10-vertex Petersen graph, a 13-vertex graph and a 15-vertex graph found by computer searches of Herz (1968), and four 16-vertex graphs. There exist at least thirteen 18-vertex hypohamiltonian graphs. By applying the flip-flop method of Chvátal (1973) to the Petersen graph and the flower snark, it is possible to show that the number of hypohamiltonian graphs, and more specifically the number of hypohamiltonian snarks, grows as an exponential function of the number of vertices.[12]

Generalizations

Graph theorists have also studied hypotraceable graphs, graphs that do not contain a Hamiltonian path but such that every subset of n − 1 vertices may be connected by a path.[13] Analogous definitions of hypohamiltonicity and hypotraceability for directed graphs have been considered by several authors.[14]

An equivalent definition of hypohamiltonian graphs is that their longest cycle has length n − 1 and that the intersection of all longest cycles is empty. Menke, Zamfirescu & Zamfirescu (1998) investigate graphs with the same property that the intersection of longest cycles is empty but in which the longest cycle length is shorter than n − 1. Herz (1968) defines the cyclability of a graph as the largest number k such that every k vertices belong to a cycle; the hypohamiltonian graphs are exactly the graphs that have cyclability n − 1. Similarly, Park, Lim & Kim (2007) define a graph to be ƒ-fault hamiltonian if the removal of at most ƒ vertices leaves a Hamiltonian subgraph. Schauerte & Zamfirescu (2006) study the graphs with cyclability n − 2.

Notes

  1. ^ Grötschel (1977); Grötschel (1980); Grötschel & Wakabayashi (1981).
  2. ^ Goemans (1995).
  3. ^ Thomassen (1981).
  4. ^ The existence of planar hypohamiltonian graphs was posed as an open question by Chvátal (1973), and Chvátal, Klarner & Knuth (1972) offered a $5 prize for the construction of one. Thomassen (1976) used Grinberg's theorem to find planar hypohamiltonian graphs of girth 3, 4, and 5 and showed that there exist infinitely many planar hypohamiltonian graphs.
  5. ^ Jooyandeh et al. (2017), using a computer search and Grinberg's theorem. Earlier small planar hypohamiltonian graphs with 42, 57 and 48 vertices, respectively, were found by Wiener & Araya (2009), Hatzel (1979) and Zamfirescu & Zamfirescu (2007).
  6. ^ Thomassen (1978).
  7. ^ Steffen (1998); Steffen (2001).
  8. ^ Collier & Schmeichel (1977).
  9. ^ Robertson (1969) proved that these graphs are non-Hamiltonian, while it is straightforward to verify that their one-vertex deletions are Hamiltonian. See Alspach (1983) for a classificiation of non-Hamiltonian generalized Petersen graphs.
  10. ^ Thomassen (1974a); Doyen & van Diest (1975).
  11. ^ Aldred, McKay & Wormald (1997). See also (sequence A141150 in the OEIS).
  12. ^ Skupień (1989); Skupień (2007).
  13. ^ Kapoor, Kronk & Lick (1968); Kronk (1969); Grünbaum (1974); Thomassen (1974a).
  14. ^ Fouquet & Jolivet (1978); Grötschel & Wakabayashi (1980); Grötschel & Wakabayashi (1984); Thomassen (1978).

References

Read other articles:

CalviàMunicipalityMagaluf LambangMunicipal locationCountry SpainAutonomous CommunityBalearic IslandsProvinceBalearic IslandsIslandMallorcaComarcaSierra de TramontanaPemerintahan • Mayor (2009-)Carlos Delgado TruyolsLuas • Total5,599 sq mi (145,02 km2)Ketinggian505 ft (154 m)Populasi (2009) • Total51.774 • Kepadatan92,470/sq mi (357,01/km2)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Si...

 

Nagahama 長浜市Kota BenderaLambangLokasi Nagahama di Prefektur ShigaNegara JepangWilayahKansaiPrefektur ShigaPemerintahan • Wali kotaYūji FujiiLuas • Total681 km2 (263 sq mi)Populasi (Oktober 1, 2015) • Total118.193 • Kepadatan173,6/km2 (450/sq mi)Zona waktuUTC+09:00Kode pos526-8501Simbol  • PohonZelkova serrata • BungaPrunus mumeNomor telepon0749-62-4111Alamat632 Yawatahig...

 

Campionato Nazionale Under-17 Serie A e BSport Calcio TipoClub FederazioneFIGC Paese Italia OrganizzatoreSettore Giovanile e Scolastico TitoloCampione d'Italia Under-17 Serie A e B Partecipanti40 FormulaGironi all'italiana (stagione regolare) + play-off + eliminazione diretta (quarti e final four) StoriaFondazione1966 Detentore Roma Record vittorie Roma (9) Modifica dati su Wikidata · Manuale I campionati giovanili della categoria Under-17[1] costituiscono un insi...

Metropolitan area in Arkansas, United StatesNorthwest ArkansasMetropolitan areaFayetteville–Springdale–Rogers MSA Clockwise from top: Fayetteville within the Ozark Mountains, Crystal Bridges Museum of American Art, downtown Rogers, downtown Springdale, Donald W. Reynolds Razorback StadiumNorthwest ArkansasNorthwest ArkansasLocation in the United StatesCoordinates: 36°4′35″N 94°9′39″W / 36.07639°N 94.16083°W / 36.07639; -94.16083Country United StatesSta...

 

American softball player Baseball player Cat OstermanUSSSA Pride – No. 38PitcherBorn: (1983-04-16) April 16, 1983 (age 40)Houston, TexasBatted: LeftThrew: LeftNPF debutMay 29, 2007, for the Rockford ThunderLast NPF appearanceAugust 17, 2015, for the USSSA PrideNPF statisticsWin–loss record95–24Earned run average0.91Strikeouts1,260Saves12 Teams Rockford Thunder (2007–2009) USSSA Pride (2010–2015) Career highlights and awards 2× Honda Sports Award (...

 

American politician from Idaho Todd LakeyMember of the Idaho SenateIncumbentAssumed office December 1, 2012Preceded byCurt McKenzie (redistricting)Constituency12th district (2012–2022)23rd district (2022–present) Personal detailsBornPortland, Oregon, U.S.Political partyRepublicanSpouseJanChildren5Residence(s)Nampa, Idaho, U.S.EducationBrigham Young University (BS)Lewis & Clark College (JD)Websitelakeyforsenate.comMilitary serviceBranch/service United States ArmyRankMajorUnitU...

Indian general election, 2014 in Madhya Pradesh ← 2009 10, 17, 24 April 2014. 2019 → All 29 constituencies from Madhya Pradesh to the Lok SabhaTurnout61.61% (10.44%)   Majority party Minority party   Party BJP INC Alliance NDA UPA Last election 16 seats 12 seats Seats won 27 2 Seat change 11 10 Madhya Pradesh The 2014 Indian general election in Madhya Pradesh were held for 29 seats in the state. The major two contenders in the state were Bharati...

 

Google Cloud PlatformTipePlatform sebagai layanan dan infrastructure as a service (en) Versi pertama7 April 2008; 16 tahun lalu (2008-04-07)GenreInfrastructure as a Service, Platform as a Service, Serverless PlatformLisensiProprietaryInformasi pengembangPengembangGoogle Inc.Informasi tambahanSitus webcloud.google.com Sunting di Wikidata  • Sunting kotak info • L • BBantuan penggunaan templat ini Google Cloud Platform, (atau GCP) adalah kumpulan layanan komputasi awan...

 

Polish politician (born 1976) You can help expand this article with text translated from the corresponding article in Polish. (December 2019) Click [show] for important translation instructions. View a machine-translated version of the Polish article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translat...

TVB

This article is about the broadcaster. For other uses, see TVB (disambiguation). Television station in Hong Kong Television Broadcasts Limited 電視廣播有限公司Headquarters at TVB CityCompany typePublicTraded asSEHK: 511IndustryTelevision broadcasting; media and entertainmentFounded19 November 1967; 56 years ago (1967-11-19) in Broadcast Drive, Kowloon Tong, British Hong KongHeadquarters77 Chun Choi Street, Tseung Kwan O Industrial Estate, New Territories, Hong K...

 

Island in Quintana Roo, Mexico CozumelSatellite image of Cozumel Island in 2001Location of Cozumel in Quintana Roo StateCozumelGeographyLocationCaribbean SeaCoordinates20°25′N 86°55′W / 20.42°N 86.92°W / 20.42; -86.92Total islands2Area647.33 km2 (249.94 sq mi)Highest point14 mAdministration MexicoStateQuintana RooMunicipalityCozumelLargest settlementSan Miguel de Cozumel (pop. 84915)Presidente municipal (Municipal presiden...

 

Gereja Santo Matias RasulGereja Santo Matias Rasul - Paroki Kosambi Baru6°10′27″S 106°42′50″E / 6.174180°S 106.713980°E / -6.174180; 106.713980Koordinat: 6°10′27″S 106°42′50″E / 6.174180°S 106.713980°E / -6.174180; 106.713980LokasiJalan Taman Kosambi Barat blok A ext 1 no.120, Duri Kosambi, Cengkareng, Jakarta Barat 11750NegaraIndonesiaDenominasiGereja Katolik RomaJumlah anggota/umat± 11.000Situs webparokikosambibaru.or....

Nuruddin Farah Nuruddin Farah (Baidoa, 24 novembre 1945) è uno scrittore somalo. Ha pubblicato romanzi, poesie e opere teatrali, incentrati soprattutto sulla storia della Somalia postcoloniale. Ha vinto il Neustadt International Prize for Literature. Indice 1 Biografia 2 Opera 3 Elenco parziale delle opere 4 Bibliografia 5 Altri progetti 6 Collegamenti esterni Biografia Nuruddin Farah è nato a Baidoa, allora Somalia italiana, in una famiglia somala di fede islamica. Studiò a Kallafo, nella...

 

Nexus 4PembuatLG ElectronicsSeriGoogle NexusJaringanGSM/EDGE/GPRS (850, 900, 1800, 1900 MHz)[1] 3G UMTS/HSPA+/DC-HSPA+ (850, 900, 1700, 1900, 2100 MHz) HSDPA 42 MbpsRilis pertama13 November 2012; 11 tahun lalu (2012-11-13)Ketersediaan menurut negara13 November 2012 (2012-11-13) (Google Play)Dihentikan01 November 2013 (2013-11-01)[2]PendahuluGalaxy NexusPenerusNexus 5TerkaitOptimus GTipeTelepon pintarFaktor bentukPipihDimensi1.339 mm (52,7...

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

  「俄亥俄」重定向至此。关于其他用法,请见「俄亥俄 (消歧义)」。 俄亥俄州 美國联邦州State of Ohio 州旗州徽綽號:七葉果之州地图中高亮部分为俄亥俄州坐标:38°27'N-41°58'N, 80°32'W-84°49'W国家 美國加入聯邦1803年3月1日,在1953年8月7日追溯頒定(第17个加入联邦)首府哥倫布(及最大城市)政府 • 州长(英语:List of Governors of {{{Name}}}]]) •&...

 

Pour les articles homonymes, voir São Carlos (homonymie). Cet article est une ébauche concernant une localité brésilienne. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. São Carlos Devise : « A bandeirantibvs venio » Héraldique Drapeau Vues de São Carlos Administration Pays Brésil Région Sud-Est État  São Paulo Langue(s) portugais Maire Airton Garcia Ferreira (PSB) Code postal 1...

 

[1]Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: SMK Catur Global – berita · surat kabar · buku · cendekiawan · JSTOR SMK Catur Global Kota BekasiLogo SMK Catur GlobalInformasiDidirikan11 Maret 2009AkreditasiAKepala SekolahSuhanda, S.Ag...

Mosque in Washington, D.C. Islamic Center of WashingtonReligionAffiliationIslamLocationLocationWashington, United StatesShown within the United StatesGeographic coordinates38°55′1.6″N 77°3′24.3″W / 38.917111°N 77.056750°W / 38.917111; -77.056750ArchitectureTypeMosqueCompleted1954SpecificationsMinaret(s)1Minaret height160 feet (49 m)[1]Websitewww.theislamiccenter.com The Islamic Center of Washington is a mosque and Islamic cultural center in Was...

 

Vittorio Pozzo, artefice del progetto di riforma del calcio italiano Il progetto Pozzo fu il piano di riforma del campionato italiano di calcio preparato da Vittorio Pozzo nel 1921. Indice 1 L'infinita crescita del campionato 2 I principi della riforma 3 L'assemblea del 24 luglio 1921 4 La spaccatura della federazione calcistica 4.1 Quadro della società secessioniste 5 La ricomposizione dello scisma 6 Note L'infinita crescita del campionato Sin dalla sua origine, il campionato italiano si er...