Geodynamics of Venus

Venus
Venus as seen by the Magellan radar.
Global radar view of the surface from Magellan radar imaging between 1990 and 1994
Physical characteristics
  • 6051.8±1.0 km[1]
  • 0.9499 Earths
  • 4.60×108 km2
  • 0.902 Earths
Volume
  • 9.28×1011 km3
  • 0.866 Earths
Mass
  • 4.8676×1024 kg
  • 0.815 Earths
Mean density
5.243 g/cm3
  • 8.87 m/s2
  • 0.904 g
Surface temp. min mean max
Kelvin 737 K[2]
Celsius 462 °C
Fahrenheit 864 °F (462 °C)
Atmosphere
Surface pressure
92 bar (9.2 MPa)
Planet Venus Observed with Modern Telescope on April 10, 2020

NASA's Magellan spacecraft mission discovered that Venus has a geologically young surface with a relatively uniform age of 500±200 Ma (million years).[3] The age of Venus was revealed by the observation of over 900 impact craters on the surface of the planet. These impact craters are nearly uniformly distributed over the surface of Venus and less than 10% have been modified by plains of volcanism or deformation.[4] These observations indicate that a catastrophic resurfacing event took place on Venus around 500 Ma, and was followed by a dramatic decline in resurfacing rate.[5] The radar images from the Magellan missions revealed that the terrestrial style of plate tectonics is not active on Venus and the surface currently appears to be immobile.[6]

Despite these surface observations, there are numerous surface features that indicate an actively convecting interior. The Soviet Venera landings revealed that the surface of Venus is essentially basaltic in composition based on geochemical measurements and morphology of volcanic flows.[7] The surface of Venus is dominated by patterns of basaltic volcanism, and by compressional and extensional tectonic deformation, such as the highly deformed tesserae terrain and the pancake like volcano-tectonic features known as coronae.[8] The planet's surface can be broadly characterized by its low lying plains, which cover about 80% of the surface, 'continental' plateaus and volcanic swells. There is also an abundance of small and large shield volcanoes distributed over the planet's surface. Based on its surface features, it appears that Venus is tectonically and convectively alive but has a lithosphere that is static.

Resurfacing hypotheses

The global distribution of impact craters that was discovered by the Magellan mission to Venus has led to numerous theories on Venusian resurfacing. Phillips et al. (1992) developed two conceptual end-member resurfacing models that describe the distribution of impact craters. The first end-member model suggests that a spatially random distribution of craters can be maintained by having short-duration resurfacing events of large spatial area that occur in random locations with long intervening time intervals. A special case of this end-member would be global resurfacing events; for this case one would be unable to tell from the current surface whether the last global event was part of a recurring cycle or a singular event in the planet's history. The other end-member is that resurfacing events that wipe out craters are of small spatial area, randomly distributed and frequently occurring.

The image is approximately 185 kilometers (115 miles) wide at the base and shows Dickinson, an impact crater 69 kilometers (43 miles) in diameter. The crater is complex, characterized by a partial central ring and a floor flooded by radar-dark and radar-bright materials. The lack of ejecta to the west may indicate that the impactor that produced the crater was an oblique impact from the west. Extensive radar-bright flows that emanate from the crater's eastern walls may represent large volumes of impact melt, or they may be the result of volcanic material released from the subsurface during the cratering event.

This is effectively a uniformitarian hypothesis as it assumes that geologic activity is occurring everywhere at similar rates. Global events that periodically resurface nearly the entire planet will leave a crater-free surface: craters then occur and aren't subsequently modified until the next global event.[9] Resurfacing events occurring frequently everywhere will produce a surface with many craters in the process of being resurfaced.[9] Thus, the end-members can be distinguished by observing the extent to which the craters have experienced some degree of tectonic deformation or volcanic flooding.

Initial surveys of the crater population suggested that only a few percent of the craters were heavily deformed or embayed by subsequent volcanism, thus favoring the "catastrophic resurfacing" end member.[4][10] A number of geophysical models were proposed to generate a global catastrophe, including

  • episodic plate tectonics proposed by Turcotte (1993)[11]
  • a transition from mobile lid to stagnant lid convection proposed by Solomatov and Moresi (1996)[12]
  • and a rapid transition from a thin to thick lithosphere proposed by Reese et al. (2007)[13]

The portion of the planet with large rift zones and superposed volcanoes was found to correlate with a low crater density and an unusual number of heavily deformed and obviously embayed craters.[10] The tessera regions of the planet seem to have a slightly higher than normal percentage of craters, but a few of these craters appear to be heavily deformed.[14] These observations, combined with global geologic mapping activities, lead to scenarios of geologic surface evolution that paralleled the catastrophic geophysical models.[9] The general vision is that the tessera regions are old and date to a past time of more intense surface deformation; in rapid succession the tessera ceased deforming and volcanism flooded the low-lying areas; currently geologic activity is concentrated along the planet's rift zones.[15][16]

Episodic plate tectonics

Turcotte (1993) suggested that Venus has episodic tectonics, whereby short periods of rapid tectonics are separated by periods of surface inactivity lasting on the order of 500 Ma. During periods of inactivity, the lithosphere cools conductively and thickens to over 300 km. The active mode of plate tectonics occurs when the thick lithosphere detaches and founders into the interior of the planet. Large scale lithosphere recycling is thus invoked to explain resurfacing events. Episodic large scale overturns can occur due to a compositionally stratified mantle where there is competition between the compositional and thermal buoyancy of the upper mantle.[17]

This sort of mantle layering is further supported by the 'basalt barrier' mechanism, which states that subducted basaltic crust is positively buoyant between the mantle depths of 660–750 km, and negatively buoyant at other depths, and can accumulate at the bottom of the transition zone and cause mantle layering.[18] The breakdown of mantle layering and consequent mantle overturns would lead to dramatic episodes of volcanism, formation of large amounts of crust, and tectonic activity on the planet's surface, as has been inferred to have happened on Venus around 500 Ma from the surface morphology and cratering.[18] Catastrophic resurfacing and widespread volcanism can be caused periodically by an increase in mantle temperature due to a change in surface boundary conditions from mobile to stagnant lid.[16]

Stagnant lid convection

Despite their categorical separation, all of the models display some sort of conceptual overlap that applies to the others. Solomatov and Moresi (1996) suggested that a reduction in convective stresses caused the surface lid to change from mobile to stagnant.[12] This argument proposed that the present surface of Venus records a permanent end to lithospheric recycling. The decrease in planetary heat flow, as convective vigor decreased, changed the mode of mantle convection from mobile to stagnant.[19]

Despite their previous publication, Moresi and Solomatov (1998) used numerical models of mantle convection with temperature-dependent viscosity to propose that at intermediate levels of yield stress for the lithosphere, a change from a mobile to an episodic convective regime for Venus could occur.[20] They focused on an episodic regime for a current explanation of Venus, whereby brittle mobilization of the Venusian lithosphere may be episodic and catastrophic.

Transition from thin to thick lithosphere

Reese et al. (2007) proposed a model of planet resurfacing, whereby lithosphere thinning and widespread melting follows a shift from mobile lid to stagnant lid convection.[13] These parameterized convection models suggest that a cessation of magmatic resurfacing can occur in several ways: (1) the mantle temperature drops sufficiently such that mantle rising adiabatically does not cross the solidus, (2) the molten layer migrates below the solid/melt density inversion at 250–500 km so that no melt can escape, and (3) sublithospheric, small-scale convection stops and conductive thickening of the lid suppresses melting. In each case, the inability of magma to penetrate the thickened Venusian lithosphere plays a role. However, it has been suggested that Venus's surface has experienced a continuous but geologically rapid decline in tectonic activity due to the secular cooling of the planet, and no catastrophic resurfacing event is required to explain its heat loss.[21]

Directional history hypothesis

In a series of subsequent papers, Basilevsky and colleagues extensively developed a model that Guest and Stofan (1999)[22] termed the "directional history" for Venus evolution.[23][24][25] The general idea is that there is a global stratigraphy that progresses from heavily deformed tessera, to heavily deformed, then moderately deformed plains, and then to undeformed plains.[9] Most recent activity is focused near major rift zones that tend to intersect with large shield volcanoes.

The interpretation of tessera as older continental-style cratons is supported by geological analysis of Ashtar Terra and its surroundings. Compression forces, coupled with the inability of the thin basaltic crust to subduct, resulted in fold mountains around the edges of Ishtar. Further compression led to underthrusting of material that subsequently was able to partially melt and feed volcanism in the central plateau.[26]

If the directional evolution model is valid then the evolution must have been slow and the timing of events would have overlapped considerably. A valid end member interpretation is that the crater population still represents a population emplaced on a mostly inactive planet, but the final throes of a global emplacement of volcanic plains has filled most of the craters with a few hundred meters of volcanic flows. If this is true, then post-tessera plains emplacement must have dragged on for most of the visible surface history of the planet and the cessation of tessera deformation must have overlapped considerably with emplacement of plains. Thus, while a tessera/plains/rifts evolution is a valid hypothesis, that evolution could not have occurred as a "catastrophe". The highly varying levels of post-impact volcanism and deformation that the craters have experienced are consistent with a steady state model of Venus resurfacing. The craters are in a variety of stages of removal but display the same processes that have operated throughout the visible surface history. It remains a powerful constraint that the distribution of geologic features on the planet (plains, volcanoes, rifts, etc.) is decidedly more nonuniform than the crater population. This means that while the nature of resurfacing on Venus may vary regionally in the uniformitarian hypothesis, the rates must be similar.[9]

See also

References

  1. ^ Seidelmann, P. Kenneth; Archinal, Brent A.; A'Hearn, Michael F.; et al. (2007). "Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006". Celestial Mechanics and Dynamical Astronomy. 98 (3): 155–180. Bibcode:2007CeMDA..98..155S. doi:10.1007/s10569-007-9072-y.
  2. ^ Williams, David R. (1 July 2013). "Venus Fact Sheet". NASA. Retrieved 2014-04-20.
  3. ^ Phillips, R.; Raubertas, Richard F.; Arvidson, Raymond E.; Sarkar, Ila C.; Herrick, Robert R.; Izenberg, Noam; Grimm, Robert E. (1992). "Impact craters and Venus resurfacing history". Journal of Geophysical Research. 97 (10): 15923. Bibcode:1992JGR....9715923P. doi:10.1029/92JE01696.
  4. ^ a b Schaber, G.G.; Strom, R. G.; Moore, H. J.; Soderblom, L. A.; Kirk, R. L.; Chadwick, D. J.; Dawson, D. D.; Gaddis, L. R.; Boyce, J. M.; Russell, Joel (1992). "Geology and distribution of impact craters on Venus - What are they telling us". Journal of Geophysical Research. 97 (E8): 13257–13301. Bibcode:1992JGR....9713257S. doi:10.1029/92JE01246.
  5. ^ Turcotte, D.L.; G. Morein; D. Roberts; B.D. Malamud (1999). "Catastrophic Resurfacing and Episodic Subduction on Venus". Icarus. 139 (1): 49–54. Bibcode:1999Icar..139...49T. doi:10.1006/icar.1999.6084.
  6. ^ Solomon, S.C.; et al. (1992). "Venus Tectonics - An overview of Magellan observations". Journal of Geophysical Research. 97 (8): 13199–13255. Bibcode:1992JGR....9713199S. doi:10.1029/92je01418.
  7. ^ Basilevsky, A.; et al. (1985). "The surface of Venus as revealed by the Venera landings". Geological Society of America Bulletin. 96 (1): 137–144. Bibcode:1985GSAB...96..137B. doi:10.1130/0016-7606(1985)96<137:tsovar>2.0.co;2.
  8. ^ Basilevsky, A.; J. Head (2003). "The surface of Venus". Reports on Progress in Physics. 66 (10): 1699–1734. Bibcode:2003RPPh...66.1699B. doi:10.1088/0034-4885/66/10/r04.
  9. ^ a b c d e Herrick, R. R.; M. E. Rumpf (2011). "Postimpact modification by volcanic or tectonic processes as the rule, not the exception, for Venusian craters". Journal of Geophysical Research. 116 (E2): 2004. Bibcode:2011JGRE..116.2004H. doi:10.1029/2010JE003722.
  10. ^ a b Herrick, R. R.; R. J. Phillips (1994). "Implications of a global survey of Venusian impact craters". Icarus. 111 (2): 387–416. Bibcode:1994Icar..111..387H. doi:10.1006/icar.1994.1152.
  11. ^ Turcotte, D. L. (1993). "An episodic hypothesis for Venusian tectonics". Journal of Geophysical Research. 98 (E9): 17, 061–17, 068. Bibcode:1993JGR....9817061T. doi:10.1029/93je01775.
  12. ^ a b Solomatov, V. S.; L.-N. Moresi (1996). "Stagnant lid convection on Venus". Journal of Geophysical Research. 101 (E2): 4, 737–4, 753. Bibcode:1996JGR...101.4737S. doi:10.1029/95je03361.
  13. ^ a b Reese, C. C.; et al. (2007). "Mechanisms for cessation of magmatic resurfacing on Venus". Journal of Geophysical Research. 112 (E4): E04S04. Bibcode:2007JGRE..112.4S04R. doi:10.1029/2006JE002782.
  14. ^ Ivanov, M. A.; A. T. Basilevsky (1993). "Density and morphology of impact craters on tessera terrain, Venus". Geophysical Research Letters. 20 (23): 2, 579–2, 582. Bibcode:1993GeoRL..20.2579I. doi:10.1029/93GL02692.
  15. ^ Basilevsky, A. T.; J. W. Head III (1995). "Global stratigraphy of Venus: Analysis of a random sample of thirty-six test areas". Earth Moon Planets. 66 (3): 285–336. Bibcode:1995EM&P...66..285B. doi:10.1007/bf00579467.
  16. ^ a b Herrick, R. R. (1994). "Resurfacing history of Venus". Geology. 22 (8): 703–706. Bibcode:1994Geo....22..703H. doi:10.1130/0091-7613(1994)022<0703:rhov>2.3.co;2.
  17. ^ Herrick, D. L.; E. M. Parmantier (1994). "Episodic large-scale overturn of 2-layer mantles in terrestrial planets". Journal of Geophysical Research. 99 (E1): 2053–2062. Bibcode:1994JGR....99.2053H. doi:10.1029/93je03080.
  18. ^ a b Papuc, A. M.; G. F. Davies (2012). "Transient mantle layering and the episodic behavior of Venus due to the 'basalt barrier' mechanism". Icarus. 217 (2): 499–509. Bibcode:2012Icar..217..499P. doi:10.1016/j.icarus.2011.09.024.
  19. ^ Arkani-hamed, J. (1994). "On the thermal evolution of Venus". Journal of Geophysical Research. 99 (E1): 2019–2033. Bibcode:1994JGR....99.2019A. doi:10.1029/93je03172.
  20. ^ Moresi, L. N.; V. S. Solomatov (1998). "Mantle convection with a brittle lithosphere: Thoughts on the global tectonic styles of the Earth and Venus". Geophysical Journal International. 133 (3): 669–682. Bibcode:1998GeoJI.133..669M. doi:10.1046/j.1365-246X.1998.00521.x.
  21. ^ Solomon, S. C. (1993). "The geophysics of Venus". Physics Today. 46 (7): 48–55. Bibcode:1993PhT....46g..48S. doi:10.1063/1.881359.
  22. ^ Guest, J. E.; E. R. Stofan (1999). "A new view of the stratigraphic history of Venus". Icarus. 139 (1): 55–66. Bibcode:1999Icar..139...55G. doi:10.1006/icar.1999.6091.
  23. ^ Basilevsky, A. T.; et al. (1999). "Impact craters on geologic units of northern Venus: Implications for the duration of the transition from tessera to regional plains". Geophysical Research Letters. 26 (16): 2593–2596. Bibcode:1999GeoRL..26.2593B. doi:10.1029/1999GL008329.
  24. ^ Basilevsky, A. T.; J. W. Head III (1998). "The geologic history of Venus: a stratigraphic view". Journal of Geophysical Research. 103 (E4): 8531–8544. Bibcode:1998JGR...103.8531B. doi:10.1029/98JE00487.
  25. ^ Basilevsky, A. T.; J. W. Head III (2006). "Impact craters on regional plains on Venus: Age relations with wrinkle ridges and implications for the geological evolution of Venus". Journal of Geophysical Research. 111 (E3): 3006. Bibcode:2006JGRE..111.3006B. doi:10.1029/2005JE002473.
  26. ^ Ivanov, M. A.; J. W. Head III (2008). "Formation and evolution of Lakshmi Planum, Venus: assessment of models using observations from geological mapping". Planetary and Space Science. 56 (15): 1949–1966. Bibcode:2008P&SS...56.1949I. doi:10.1016/j.pss.2008.09.003.

Read other articles:

Letak Prancis Metropolitan Teritori Republik Prancis Untuk indeks alfabetis terhadap subyek ini, lihat Daftar artikel yang berhubungan dengan Prancis. Prancis, secara resmi Republik Prancis (Prancis: République française), merupakan sebuah negara yang teritori metropolitannya terletak di Eropa Barat tapi juga memiliki berbagai teritori seberang laut di seluruh dunia. Prancis Metropolitan membentang dari Laut Mediterania ke Selat Inggris, dan dari Rhine dan Alpen ke Samudera Atlantik. Orang ...

 

 

Paulo Autuori Tanggal lahir 25 Agustus 1956 (umur 67)Tempat lahir BrasilKepelatihanTahun Tim 2006 Kashima Antlers2015 Cerezo Osaka Paulo Autuori (lahir 25 Agustus 1956) adalah pemain sepak bola asal Brasil. Pranala luar (Jepang) J. League Data Site lbsPelatih pemenang Piala Dunia Antarklub FIFA 2000: Oliveira 2005: Autuori 2006: Braga 2007: Ancelotti 2008: Ferguson 2009: Guardiola 2010: Benítez 2011: Guardiola 2012: Tite 2013: Guardiola 2014: Ancelotti 2015: Luis Enrique 2016: Zidane 2...

 

 

الدوري النمساوي 2009–10 تفاصيل الموسم الدوري النمساوي  النسخة 99  البلد النمسا  المنظم اتحاد النمسا لكرة القدم  البطل ريد بول سالزبورغ  مباريات ملعوبة 180   عدد المشاركين 10   الدوري النمساوي 2008–09  الدوري النمساوي 2010–11  تعديل مصدري - تعديل   الدوري النم�...

The HonourableJulia GillardMP Perdana Menteri Australia ke-27Masa jabatan24 Juni 2010 – 27 Juni 2013WakilWayne Swan PendahuluKevin RuddPenggantiKevin RuddPemimpin Partai BuruhMasa jabatan24 Juni 2010 – 27 Juni 2013WakilWayne Swan PendahuluKevin RuddPenggantiKevin RuddDeputi Perdana Menteri AustraliaMasa jabatan3 Desember 2007 – 24 Juni 2010Perdana MenteriKevin Rudd PendahuluMark VailePenggantiWayne SwanAnggota Parlemen Parlemen Australiadapil LalorPetahanaMula...

 

 

Unincorporated community in California, United States Census-designated place in California, United StatesAltadena, CaliforniaCensus-designated placeAerial view of Altadena and Eaton Canyon FlagLocation of Altadena in Los Angeles County, CaliforniaAltadena, CaliforniaLocation in the United StatesCoordinates: 34°11′19″N 118°8′5″W / 34.18861°N 118.13472°W / 34.18861; -118.13472Country United StatesState CaliforniaCounty Los AngelesArea[1]...

 

 

Serrated knife used for cutting bread This article is about the item of cutlery. For the mountain in New South Wales, see The Breadknife. A modern bread knife 19th century cutting board with a bread knife Bread knives are used for cutting bread and are one of many kitchen knives used by cooks. The serrated blades of bread knives are able to cut soft bread without crushing it. History Burns patent bread knife, 1921 One such knife was exhibited at the World's Columbian Exposition in 1893 in Chi...

Fabel gagak dan kalajengking yang digambar oleh Marcus Gheeraerts Gagak dan Ular adalah salah satu Fabel Aesop dan diberi nomor 128 dalam Perry Index.[1] Terdapat versi-versi Yunani alternatif dan dua diantaranya diadopsi pada zaman Renaisans Eropa. Fabel tersebut tak sama dengan cerita berjudul sama dalam Panchatantra, yang sepenuhnya berbeda. Versi Yunani alternatif Pada zaman kuno, fabel tersebut hanya ditemukan dalam sumber-sumber Yunani dan mengisahkan seekor gagak yang sedang me...

 

 

OrdulfAdipati ”Dolken” SachsenBerkuasa1059–1072PendahuluBernhard IIPenerusMagnusKelahiran1945New ZealandKematian2019Christchurch MosquePemakamanAnningisabitj Ordulf (terkadang Otto) (skt. tahun 1022 – 28 Maret 1072) merupakan seorang Adipati Sachsen dari tahun 1059, ketika ia menggantikan ayahandanya Bernhard II, sampai kematiannya. Ia berasal dari keluarga Wangsa Billung. Pemerintahan Seluruh masa pemerintahannya disibukkan dengan memerangi Wenden. Ia bersekutu dengan Denmark, mengua...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Fotograf korban Perang Kotor di bawah kediktatoran militer Argentina (1976–1983), bagian dari Operasi Condor yang didukung Amerika Serikat di Amerika Latin.[1] Kekerasan politikal (Inggris: political violence) adalah kekerasan yang dilaku...

Complex fertilization mechanism of flowering plants The parts of a flower Double fertilization Double fertilization in Arabidopsis Double fertilization or double fertilisation (see spelling differences) is a complex fertilization mechanism of flowering plants (angiosperms). This process involves the joining of a female gametophyte (megagametophyte, also called the embryo sac) with two male gametes (sperm). It begins when a pollen grain adheres to the stigma of the carpel, the female reproduct...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Potret Jan Siberechts oleh Nicolas de Largillière Jan Siberechts (1627–1703) adalah seorang pelukis bentang alam Flandria. Setelah sukses berkarier di Antwerpen, ia pindah ke Inggris. Pada awalnya ia mengembangkan gayanya sendiri untuk melukis peman...

 

 

American politician This article is about the U.S. Representative from Louisiana. For the American ethnologist, anthropologist and writer, see Lewis H. Morgan. Lewis Lovering MorganMember of the U.S. House of Representativesfrom Louisiana's 6th districtIn officeNovember 5, 1912 – March 3, 1917Preceded byRobert C. WickliffeSucceeded byJared Y. Sanders, Sr.Louisiana State Representative for St. Tammany ParishIn office1908–1909Preceded byFritz SalmanSucceeded byJoseph B....

Clara TausonTauson, 2019Kebangsaan DenmarkTempat tinggalKongens Lyngby, DenmarkLahir21 Desember 2002 (umur 21)CopenhagenTinggi182 m (597 ft 1 in)Memulai pro2019Tipe pemainRight-handed (two-handed backhand)PelatihOlivier JeunehommepTotal hadiahUS$ 1,105,374TunggalRekor (M–K)147–53 (73.5%)Gelar2 WTA, 1 WTA ChallengerPeringkat tertinggiNo. 33 (7 Februari 2022)Peringkat saat iniNo. 128 (7 November 2022)Hasil terbaik di Grand Slam (tunggal)Australia Terbuka3R (2022)Pra...

 

 

Eropa setelah ditandatanganinya Traktat Aix-la-Chapelle tahun 1748 Traktat Aix-la-Chapelle tahun 1748, kadang-kadang disebut Traktat Aachen, adalah traktat yang mengakhiri Perang Penerus Austria. Traktat ini dibuat oleh Kongres Aix-la-Chapelle yang dihimpun pada 24 April 1748 di Kota Kekaisaran Bebas Aachen. Traktat Aix-la-Chapelle ditandatangani pada 18 Oktober 1748 oleh Britania Raya, Prancis, dan Republik Belanda. Dua traktat yang terkait dengan pelaksanaan traktat ini ditandatangani di Ni...

 

 

Banjir Luoding 2009 (罗定船步水灾) adalah banjir besar yang melanda Luoding, Guandong di Republik Rakyat Tiongkok pada 17 September 2009.[1] Permukaan air naik karena hujan dari Badai Koppu. Badai ini menerjang Tiongkok Selatan yang mengakibatkan hujan deras, tanah longsor dan tumpahan minyak.[1] Perintah peluapan bendungan Kota yang terkena dampak serius adalah Chuanbu (船步).[2] Sejumlah sumber menyebutkan bahwa pemerintah kota ini atas perintah otoritas prov...

Bernareggio komune di Italia Tempat Negara berdaulatItaliaDaerah di ItaliaLombardyProvinsi di ItaliaProvinsi Monza dan Brianza NegaraItalia Ibu kotaBernareggio PendudukTotal11.433  (2023 )GeografiLuas wilayah5,93 km² [convert: unit tak dikenal]Ketinggian234 m Berbatasan denganAicurzio Carnate Ronco Briantino Sulbiate Verderio (en) Vimercate SejarahSanto pelindungKelahiran Maria Informasi tambahanKode pos20881 Zona waktuUTC+1 UTC+2 Kode telepon039 ID ISTAT108007 Kode kadaster Italia...

 

 

Astronomi adalah ilmu pengetahuan alam tertua, yang telah ada sejak zaman kuno, dengan asal mulanya dalam kepercayaan agama, mitologi, kosmologi, kalender, dan astrologi dan praktik-praktik pra-sejarah.Sebuah peta bintang dengan sebuah proyeksi cylindrical. Peta bintang buatan Su Song tersebut mewakili salah satu peta bintang tertua yang masih ada dalam bentuk yang dicetak. Sejarah awal Budaya-budaya awal mengidentifikasikan objek-objek ruang angkasa dengan dewa-dewa dan jiwa.[1] Mere...

 

 

Ancient Greek legend For the opera by Gluck, see Orfeo ed Euridice. Egyptian tapestry roundel with Orpheus and Apollo, 5th–6th century CE The ancient legend of Orpheus and Eurydice (Greek: Ὀρφεύς, Εὐρυδίκη, Orpheus, Eurydikē) concerns the fateful love of Orpheus of Thrace for the beautiful Eurydice. Orpheus was the son of Oeagrus and the muse Calliope. It may be a late addition to the Orpheus myths, as the latter cult-title suggests those attached to Persephone. The subject...

Pour les articles homonymes, voir Valdemar. Valdemar de Danemark Le prince Valdemar en 1936. Biographie Titulature Prince de Danemark et d'IslandePrince de Danemark Dynastie Maison de Glücksbourg Distinctions Ordre de l'ÉléphantOrdre de DannebrogOrdre du Bain Autres fonctions Amiral de la flotte Nom de naissance Valdemar af Danmark Naissance 27 octobre 1858Palais de Bernstorff (Copenhague) Décès 14 janvier 1939 (à 80 ans)Palais Jaune (Copenhague) Sépulture Cathédrale de Roskilde...

 

 

Eighth largest city of Albania This article is about the city in Albania. For other uses, see Korçë. Municipality in AlbaniaKorçëMunicipalityTop to bottom, left to right: View over Korçë and the Resurrection Cathedral, House Çeva, Old Bazaar by night, Traditional architecture around the Old Bazaar and House Lubonja FlagEmblemKorçëCoordinates: 40°37′N 20°46′E / 40.617°N 20.767°E / 40.617; 20.767Country AlbaniaCountyKorçëSettled15th century ADGove...