Effective number of parties

In political science, the effective number of parties is a diversity index introduced by Laakso and Rein Taagepera (1979),[1] which provides for an adjusted number of political parties in a country's party system, weighted by their relative size. The measure is especially useful when comparing party systems across countries.[2]

The size of a party can be measured by either:

  1. The effective number of electoral parties (ENEP) weights parties by their share of the vote.
  2. The effective number of parliamentary parties (ENPP) weights parties by their share of seats in the legislature.

The number of parties equals the effective number of parties only when all parties have equal strength. In any other case, the effective number of parties is lower than the actual number of parties. The effective number of parties is a frequent operationalization for political fragmentation. Political concentration can seen as the share of power of large political parties.[3]

Example of how the effective number of parties shows the fragmentation of the Dutch political landscape (1981–2017)

There are several common alternatives for how to define the effective number of parties.[4] John K. Wildgen's index of "hyperfractionalization" accords special weight to small parties.[5] Juan Molinar's index gives special weight to the largest party.[6] Dunleavy and Boucek provide a useful critique of the Molinar index.[7]

Measures

Quadratic

Laakso and Taagepera (1979) were the first to define the effective number of parties using the following formula:

where n is the number of parties with at least one vote/seat and the square of each party's proportion of all votes or seats. This is also the formula for the inverse Simpson index, or the true diversity of order 2. This definition is still the most commonly-used in political science.

This measure is equivalent to the Herfindahl–Hirschman index, used in economics; the Simpson diversity index in ecology; the inverse participation ratio (IPR) in physics; and the Rényi entropy of order in information theory.[8]

Alternatives

An alternative formula was proposed by Grigorii Golosov in 2010.[9]

which is equivalent – if we only consider parties with at least one vote/seat – to

Here, n is the number of parties, the square of each party's proportion of all votes or seats, and is the square of the largest party's proportion of all votes or seats.

Values

The following table illustrates the difference between the values produced by the two formulas for eight hypothetical vote or seat constellations:

Constellation Largest component, fractional share Other components, fractional shares N, Laakso-Taagepera N, Golosov
A 0.75 0.25 1.60 1.33
B 0.75 0.1, 15 at 0.01 1.74 1.42
C 0.55 0.45 1.98 1.82
D 0.55 3 at 0.1, 15 at 0.01 2.99 2.24
E 0.35 0.35, 0.3 2.99 2.90
F 0.35 5 at 0.1, 15 at 0.01 5.75 4.49
G 0.15 5 at 0.15, 0.1 6.90 6.89
H 0.15 7 at 0.1, 15 at 0.01 10.64 11.85

Seat product model

The effective number of parties can be predicted with the seat product model[10][11] as , where M is the district magnitude and S is the assembly size.

Effective number of parties by country

For individual countries the values of effective number of number of parliamentary parties (ENPP) for the last available election is shown.[12] Some of the highest effective number of parties are in Brazil, Belgium, and Bosnia and Herzegovina. European Parliament has an even higher effective number of parties if national parties are considered, yet a much lower effective number of parties if political groups of the European Parliament are considered.

See also

References

  1. ^ Laakso, Markku; Taagepera, Rein (1979). ""Effective" Number of Parties: A Measure with Application to West Europe". Comparative Political Studies. 12 (1): 3–27. doi:10.1177/001041407901200101. ISSN 0010-4140. S2CID 143250203.
  2. ^ Lijphart, Arend (1999): Patterns of Democracy. New Haven/London: Yale UP
  3. ^ Avila-Cano, Antonio; Triguero-Ruiz, Francisco (2024). "Concentration of political power: Can we improve its measurement?". Comparative European Politics. 22 (3): 389–407. doi:10.1057/s41295-023-00365-1. ISSN 1472-4790.
  4. ^ Arend Lijphart (1 January 1994). Electoral Systems and Party Systems: A Study of Twenty-seven Democracies, 1945–1990. Oxford University Press. p. 69. ISBN 978-0-19-827347-9.
  5. ^ Wildgen, John K. (1971-07-01). "The Measurement of Hyperfractionalization". Comparative Political Studies. 4 (2). Cps.sagepub.com: 233–243. doi:10.1177/001041407100400205. Retrieved 2014-01-05.
  6. ^ Molinar, Juan (1 January 1991). "Counting the Number of Parties: An Alternative Index". The American Political Science Review. 85 (4): 1383–1391. doi:10.2307/1963951. JSTOR 1963951. S2CID 154924401.
  7. ^ Dunleavy, Patrick; Boucek, Françoise (2003). "Constructing the Number of Parties" (PDF). Party Politics. 9 (3): 291–315. doi:10.1177/1354068803009003002. S2CID 33028828.
  8. ^ Bailey, Jack (2024). "A Solution to the Seat-Product Problem. doi:10.33774/apsa-2024-1x8ft-v2.
  9. ^ Golosov, Grigorii V. (2010). "The Effective Number of Parties: A New Approach". Party Politics. 16 (2): 171–192. doi:10.1177/1354068809339538. ISSN 1354-0688. S2CID 144503915.
  10. ^ Taagepera, Rein (2007). "Predicting Party Sizes". Oxford University Press
  11. ^ Li, Yuhui; Shugart, Matthew S. (2016). "The Seat Product Model of the effective number of parties: A case for applied political science". Electoral Studies. 41: 23–34. doi:10.1016/j.electstud.2015.10.011.
  12. ^ "Election Indices" (PDF).

Read other articles:

Untuk lagu rakyat Indonesia yang berjudul sama, lihat Genjer-genjer.Artikel ini bukan mengenai eceng gondok. Genjer Limnocharis flava TaksonomiDivisiTracheophytaSubdivisiSpermatophytesKladAngiospermaeKladmonocotsOrdoAlismatalesFamiliAlismataceaeGenusLimnocharisSpesiesLimnocharis flava Buchenau, 1869 Tata namaBasionimAlisma flavum (en) lbs Genjer,[1] kelayan,[2] atau eceng[3] (Limnocharis flava) adalah sejenis tumbuhan rawa yang banyak dijumpai di sawah atau perairan da...

 

 

1964 live album by The DublinersThe DublinersLive album by The DublinersReleased1964StudioLivingston Recording Studios, LondonGenreIrish folkLength36:28LabelTransatlanticProducerNathan JosephThe Dubliners chronology The Dubliners(1964) In Concert(1965) US cover Professional ratingsReview scoresSourceRatingAllmusic[1] The Dubliners is the debut album by the Irish folk band The Dubliners. A studio recording in front of a small invited audience, It was produced by Nathan Joseph ...

 

 

Peta infrastruktur dan tata guna lahan di Komune Guigneville-sur-Essonne.  = Kawasan perkotaan  = Lahan subur  = Padang rumput  = Lahan pertanaman campuran  = Hutan  = Vegetasi perdu  = Lahan basah  = Anak sungaiGuigneville-sur-EssonneNegaraPrancisArondisemenÉtampesKantonLa Ferté-AlaisAntarkomunebelum ada pada 2007Kode INSEE/pos91293 /  Guigneville-sur-Essonne merupakan sebuah komune di département Essonne, di region Île-de-France di Prancis. D...

Penyerbuan BastilleBagian dari Revolusi PrancisPenyerbuan Bastile oleh Jean-Pierre HouëlTanggal14 Juli 1789; 234 tahun lalu (1789-07-14)LokasiParis, Prancis48°51′11″N 2°22′09″E / 48.85306°N 2.36917°E / 48.85306; 2.36917Koordinat: 48°51′11″N 2°22′09″E / 48.85306°N 2.36917°E / 48.85306; 2.36917Hasil Bastille direbut, pemberontakan bermulaPihak terlibat  Pemerintah Prancis Milisi warga Paris Gardes FrançaisesToko...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Woburn Memorial High School – news · newspapers · books · scholar · JSTOR (February 2019) (Learn how and when to remove this message) Public high school in Woburn, Massachusetts, United StatesWoburn Memorial High SchoolAddress88 Montvale AvenueWoburn, Massachus...

 

 

Rwandan politician (1945–2023) Faustin TwagiramunguTwagiramungu in 20136th Prime Minister of RwandaIn office19 July 1994 – 28 August 1995[1]PresidentPasteur BizimunguPreceded byJean KambandaSucceeded byPierre-Célestin Rwigema Personal detailsBorn(1945-08-14)14 August 1945Gishoma commune, Cyangugu Prefecture, Ruanda-Urundi[2]Died2 December 2023(2023-12-02) (aged 78)Brussels, BelgiumNationalityRwandanPolitical partyRwandan Dream Initiative (from 2010)Other...

Gay bar in Old Compton Street, London This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Comptons of Soho – news · newspapers · books · scholar · JSTOR (June 2010) (Learn how and when to remove this message) Comptons of Soho during London Gay Pride 2010 Comptons of Soho is a gay pub in London. Situated at 51–53 Old Compton Street in the heart of Soho's '...

 

 

Canadian ice hockey player Ice hockey player Loren Gabel Gabel in 2019Born (1997-07-24) July 24, 1997 (age 26)Kitchener, Ontario, CanadaHeight 5 ft 4 in (163 cm)Weight 141 lb (64 kg; 10 st 1 lb)Position ForwardShoots LeftPWHL teamFormer teams PWHL Boston Boston Pride (PHF) Clarkson Golden Knights (NCAA) National team  CanadaPlaying career 2015–present Medal record World Championships 2019 Finland Loren Gabel (born July 24, 1997) is a Canadian...

 

 

Italian tennis player, commentator, and journalist (1930–2022) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gianni Clerici – news · newspapers · books · scholar · JSTOR (June 2022) (Learn how and when to remove this message) Gianni Clerici Gianni Clerici (24 July 1930 – 6 June 2022) was an Italian ten...

For the new Pamban bridge under construction, see New Pamban Bridge. Railway bridge connecting Pamban Island to mainland India Pamban BridgePamban BridgeCoordinates9°16′57.25″N 79°12′5.91″E / 9.2825694°N 79.2016417°E / 9.2825694; 79.2016417CarriesRailLocaleRameswaram, Tamil Nadu, IndiaOwnerIndian RailwaysCharacteristicsTotal length6,776 feet (2,065 m)No. of spans144Rail characteristicsNo. of tracks1Track gaugeBroad gaugeHistoryConstruction startAugust ...

 

 

Suami-Suami Takut Istri the MovieSutradaraSofyan DesurzaProduser Raam Punjabi Anjasmara Pemeran Sarah Azhari Rahma Azhari Fauzi Baadila Alexandra Gottardo Olla Ramlan Otis Pamutih Aty Fathiyah Irfan Penyok Putty Noor Asri Welas Sumaisy Djaitov Yanda Ozzol Ramdan Melvy Noviza Marissa Saputra Epy Kusnandar Amel Carla DistributorMVP PicturesTanggal rilis25 September 2008Durasi45 menitNegaraIndonesiaBahasaBahasa IndonesiaPendapatankotorRp 6.9 miliar Suami-Suami Takut Istri the Movie merupakan fil...

 

 

Kings Langley Kings Langley High Street, ke arah utara. Population 5,072 (sensus 2001) 5,214 (sensus 2011)[1] Ref. grid OS TL067030 Distrik Dacorum County shire Hertfordshire Region East Negara konstituen Inggris Negara berdaulat Britania Raya Kota pos KINGS LANGLEY Distrik kode pos WD4 Kode telepon 01923 Polisi Hertfordshire Pemadam kebakaran Hertfordshire Ambulans East of England Parlemen UE East of England Parlemen Britania Raya He...

Dutch painter (1614–1670) Self-portrait of Jacob van Loo, ca. 1660. Jacob van Loo (1614 – 26 November 1670) was a painter of the Dutch Golden Age, chiefly active in Amsterdam and, after 1660, in Paris. Van Loo is known for his conversational groupings; particularly his mythological and biblical scenes generally attributed to the genre of History painting. He was especially celebrated for the quality of his nudes to the extent that, during his lifetime, particularly his female figures were...

 

 

French balloonist and inventor of the frameless parachute André-Jacques GarnerinBorn(1769-01-31)31 January 1769Paris, FranceDied18 August 1823(1823-08-18) (aged 54)Paris, FranceKnown forPioneer balloonist and parachuter André-Jacques Garnerin (31 January 1769 – 18 August 1823) was a French balloonist and the inventor of the frameless parachute. He was appointed Official Aeronaut of France. Biography André-Jacques Garnerin was born in Paris. During the first phase ...

 

 

Gambar X-ray kaki yang mengalami laminitis Laminitis adalah peradangan jaringan tanduk kuku yang disebabkan oleh gangguan sirkulasi darah.[1] Penyebab Laminitis lebih disebabkan oleh perubahan pakan mendadak, ketidakseimbangan konsentrat dan serat yang disertai penyakit lain (faktor predisposisi).[1] Adapun faktor predisposisi dari penyakit laminitis yaitu makanan tinggi karbohidrat, kesakitan sistemik atau kondisi yang menyebabkan endotoksin misalnya radang ambing, radang rah...

2008 studio album by Sharleen SpiteriMelodyStudio album by Sharleen SpiteriReleased14 July 2008 (2008-07-14)Recorded2007–2008GenrePop, soulLength36:57LabelMercury, Universal MusicProducerSharleen Spiteri, Bernard Butler, George MillerSharleen Spiteri chronology Melody(2008) The Movie Songbook(2010) Singles from Melody All the Times I CriedReleased: 7 July 2008 Stop, I Don't Love You AnymoreReleased: 6 October 2008 It Was YouReleased: 1 December 2008 Melody is the deb...

 

 

State of seclusion or isolation of a person For other uses, see Solitude (disambiguation). Solitude, also known as social withdrawal, is a state of seclusion or isolation, meaning lack of socialisation. Effects can be either positive or negative, depending on the situation. Short-term solitude is often valued as a time when one may work, think, or rest without disturbance. It may be desired for the sake of privacy. Long-term solitude may stem from soured relationships, loss of loved ones, del...

 

 

American National Guard officer and government official John KingInsurance Commissioner of GeorgiaIncumbentAssumed office July 1, 2019Acting: July 1, 2019 – July 22, 2021GovernorBrian KempPreceded byJim Beck Personal detailsBornMexicoPolitical partyRepublicanEducationBrenau University (BA)United States Army War College (MS)Military serviceAllegiance United StatesBranch/service United States ArmyYears of service1985–2023RankMajor GeneralUnitUnited States National Gu...

Voce principale: Pattinaggio di velocità ai Giochi olimpici. Ai XVI Giochi olimpici invernali del 1992 ad Albertville (Francia), vennero assegnate medaglie in dieci specialità del pattinaggiò di velocità. Le gare si svolsero dall'8 al 22 febbraio nello Stade de Patinage Olympique. Indice 1 Risultati 1.1 Gare maschili 1.1.1 500 m 1.1.2 1000 m 1.1.3 1500 m 1.1.4 5000 m 1.1.5 10000 m 1.2 Gare femminili 1.2.1 500 m 1.2.2 1000 m 1.2.3 1500 m 1.2.4 3000 m 1.2.5 5000 m 2 Medagliere per nazioni ...

 

 

Ejemplo de transepto. La palabra transepto se utiliza comúnmente en la terminología arquitectónica religiosa para designar la nave transversal que en las iglesias cruza a la principal ortogonalmente (perpendicularmente). También designa, más genéricamente, a cualquier nave o corredor que cruce de manera ortogonal a otro mayor. El espacio común entre el transepto y la nave es conocido como crucero.[1]​ Características El transepto se sitúa habitualmente entre el presbiterio (o e...