Doxastic logic

Doxastic logic is a type of logic concerned with reasoning about beliefs.

The term doxastic derives from the Ancient Greek δόξα (doxa, "opinion, belief"), from which the English term doxa ("popular opinion or belief") is also borrowed. Typically, a doxastic logic uses the notation to mean "It is believed that is the case", and the set denotes a set of beliefs. In doxastic logic, belief is treated as a modal operator.

There is complete parallelism between a person who believes propositions and a formal system that derives propositions. Using doxastic logic, one can express the epistemic counterpart of Gödel's incompleteness theorem of metalogic, as well as Löb's theorem, and other metalogical results in terms of belief.[1]

Types of reasoners

To demonstrate the properties of sets of beliefs, Raymond Smullyan defines the following types of reasoners:

  • Accurate reasoner:[1][2][3][4] An accurate reasoner never believes any false proposition. (modal axiom T)
  • Inaccurate reasoner:[1][2][3][4] An inaccurate reasoner believes at least one false proposition.
  • Consistent reasoner:[1][2][3][4] A consistent reasoner never simultaneously believes a proposition and its negation. (modal axiom D)
  • Normal reasoner:[1][2][3][4] A normal reasoner is one who, while believing also believes they believe p (modal axiom 4).
A variation on this would be someone who, while not believing also believes they don't believe p (modal axiom 5).
  • Peculiar reasoner:[1][4] A peculiar reasoner believes proposition p while also believing they do not believe Although a peculiar reasoner may seem like a strange psychological phenomenon (see Moore's paradox), a peculiar reasoner is necessarily inaccurate but not necessarily inconsistent.
  • Regular reasoner:[1][2][3][4] A regular reasoner is one who, while believing , also believes .
  • Reflexive reasoner:[1][4] A reflexive reasoner is one for whom every proposition has some proposition such that the reasoner believes .
If a reflexive reasoner of type 4 [see below] believes , they will believe p. This is a parallelism of Löb's theorem for reasoners.
  • Conceited reasoner:[1][4] A conceited reasoner believes their beliefs are never inaccurate.
Rewritten in de re form, this is logically equivalent to:
This implies that:
This shows that a conceited reasoner is always a stable reasoner (see below).
  • Unstable reasoner:[1][4] An unstable reasoner is one who believes that they believe some proposition, but in fact do not believe it. This is just as strange a psychological phenomenon as peculiarity; however, an unstable reasoner is not necessarily inconsistent.
  • Stable reasoner:[1][4] A stable reasoner is not unstable. That is, for every if they believe then they believe Note that stability is the converse of normality. We will say that a reasoner believes they are stable if for every proposition they believe (believing: "If I should ever believe that I believe then I really will believe "). This corresponds to having a dense accessibility relation in Kripke semantics, and any accurate reasoner is always stable.
  • Modest reasoner:[1][4] A modest reasoner is one for whom for every believed proposition , only if they believe . A modest reasoner never believes unless they believe . Any reflexive reasoner of type 4 is modest. (Löb's Theorem)
  • Queer reasoner:[4] A queer reasoner is of type G and believes they are inconsistent—but is wrong in this belief.
  • Timid reasoner:[4] A timid reasoner does not believe [is "afraid to" believe ] if they believe that belief in leads to a contradictory belief.

Increasing levels of rationality

The symbol means is a tautology/theorem provable in Propositional Calculus. Also, their set of beliefs (past, present and future) is logically closed under modus ponens. If they ever believe and then they will (sooner or later) believe :
This rule can also be thought of as stating that belief distributes over implication, as it's logically equivalent to
.
Note that, in reality, even the assumption of type 1 reasoner may be too strong for some cases (see Lottery paradox).
  • Type 1* reasoner:[1][2][3][4] A type 1* reasoner believes all tautologies; their set of beliefs (past, present and future) is logically closed under modus ponens, and for any propositions and if they believe then they will believe that if they believe then they will believe . The type 1* reasoner has "a shade more" self awareness than a type 1 reasoner.
  • Type 2 reasoner:[1][2][3][4] A reasoner is of type 2 if they are of type 1, and if for every and they (correctly) believe: "If I should ever believe both and , then I will believe ." Being of type 1, they also believe the logically equivalent proposition: A type 2 reasoner knows their beliefs are closed under modus ponens.
  • Type 3 reasoner:[1][2][3][4] A reasoner is of type 3 if they are a normal reasoner of type 2.
  • Type 4 reasoner:[1][2][3][4][5] A reasoner is of type 4 if they are of type 3 and also believe they are normal.
  • Type G reasoner:[1][4] A reasoner of type 4 who believes they are modest.

Self-fulfilling beliefs

For systems, we define reflexivity to mean that for any (in the language of the system) there is some such that is provable in the system. Löb's theorem (in a general form) is that for any reflexive system of type 4, if is provable in the system, so is [1][4]

Inconsistency of the belief in one's stability

If a consistent reflexive reasoner of type 4 believes that they are stable, then they will become unstable. Stated otherwise, if a stable reflexive reasoner of type 4 believes that they are stable, then they will become inconsistent. Why is this? Suppose that a stable reflexive reasoner of type 4 believes that they are stable. We will show that they will (sooner or later) believe every proposition (and hence be inconsistent). Take any proposition The reasoner believes hence by Löb's theorem they will believe (because they believe where is the proposition and so they will believe which is the proposition ). Being stable, they will then believe [1][4]

See also

References

  1. ^ a b c d e f g h i j k l m n o p q r s t Smullyan, Raymond M., (1986) Logicians who reason about themselves, Proceedings of the 1986 conference on Theoretical aspects of reasoning about knowledge, Monterey (CA), Morgan Kaufmann Publishers Inc., San Francisco (CA), pp. 341–352
  2. ^ a b c d e f g h i j https://web.archive.org/web/20070930165226/http://cs.wwc.edu/KU/Logic/Book/book/node17.html Belief, Knowledge and Self-Awareness[dead link]
  3. ^ a b c d e f g h i j https://web.archive.org/web/20070213054220/http://moonbase.wwc.edu/~aabyan/Logic/Modal.html Modal Logics[dead link]
  4. ^ a b c d e f g h i j k l m n o p q r s t u Smullyan, Raymond M., (1987) Forever Undecided, Alfred A. Knopf Inc.
  5. ^ a b Rod Girle, Possible Worlds, McGill-Queen's University Press (2003) ISBN 0-7735-2668-4 ISBN 978-0773526686

Further reading

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Konsep Telepon seluler 5G adalah sebuah konsep teknologi yang akan memiliki software yang mendefinisikan skema radio dan modulasi seperti halnya skema pengontrol kesalahan terbaru (New Error-Control Schemes) yang dapat didownload melalui internet. Pen...

 

Peta menunjukkan lokasi Datu Paglas Data sensus penduduk di Datu Paglas Tahun Populasi Persentase 199515.522—200020.0145.61%200729.9795.73% Datu Paglas adalah munisipalitas yang terletak di provinsi Maguindanao, Filipina. Pada tahun 2010, munisipalitas ini memiliki populasi sebesar 29.979 jiwa atau 4.997 rumah tangga. Pembagian wilayah Secara administratif Datu Paglas terbagi menjadi 23 barangay, yaitu:[1] Alip (Pob.) Bonawan Bulod Damalusay Damawato Datang Elbebe Kalumenga (Kaluman...

 

Untuk kegunaan lain, lihat Provinsi Buenos Aires. Buenos AiresKota OtonomiCiudad Autónoma de Buenos AiresAutonomous City of Buenos AiresKota Otonom Buenos AiresDari atas: Pemandangan kota di malam hari, Kongres Nasional, Jembatan Wanita, penari tango, Pink House, Katedral Metropolitan, Cabildo, Obelisk, Teater Colon, Pemakaman La Recoleta, Planetarium di Palermo Woods, dan Caminito di La Boca. BenderaLambang kebesaranNegaraArgentinaDibentuk1536, 1580Pemerintahan • JenisKota otono...

Matanikau Sungai Anggota Korps Marinir Amerika Serikat berpatroli melewati Sungai Matanikau di Guadalkanal pada September 1942 Negara  Kepulauan Solomon Sumber  - location Guadalkanal Muara  - lokasi Savo Sound Sungai Matanikau di Guadalkanal, Kepulauan Solomon, terletak di sebelah barat laut pulau. Selama Kampanye Guadalkanal di Perang Dunia II, beberapa pertempuran terjadi antara Amerika Serikat dan Tentara Kekaisaran Jepang di dekat sungai. Referensi Wikimedia Com...

 

Australian multinational discount department store chain owned by Wesfarmers This article is about the Australian retailer and flagship brand of Wesfarmer's Kmart Group. For other uses, see Kmart (disambiguation). This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: The article is full of incorrect grammar and unsorted information. Please help improve this article if you can. (December 2022) (Learn how and when to remove this template message) Kmart...

 

حسن طهراني مقدم حسن طهراني مقدم معلومات شخصية الميلاد 29 أكتوبر 1959(1959-10-29)[1]إيران الوفاة 11 ديسمبر 2011 (52 سنة) [2]طهران، إیران سبب الوفاة قتل في معركة  مكان الدفن طهران، إیران الجنسية إیراني اللقب أبو العلم الصاروخي الإيراني الحياة العملية المهنة عسكري  الخدمة الع�...

Pour les articles homonymes, voir Sévène. Édouard Sévène« Sévène, fabricant », détail d'une étude par Isabey, 1802.BiographieNaissance 6 mars 1761MarvejolsDécès 15 septembre 1822 (à 61 ans)RouenNom de naissance Jacques Édouard SévèneNationalité FrançaiseDomicile RouenActivité Homme d'affairesFratrie Jean-Auguste SévèneParentèle Raymond Sevenemodifier - modifier le code - modifier Wikidata Édouard Sévène, né le 6 mars 1761 à Marvejols, mort le 15 sep...

 

Pour les articles homonymes, voir Wolff et Christian Wolff. Christian WolffNaissance 28 septembre 1679Breslau, Royaume de BohêmeDécès 27 juillet 1754 (à 74 ans)Halle, Royaume de PrusseFormation Université Friedrich-Schiller d'Iéna (à partir de 1699)Université de LeipzigÉcole/tradition Rationalisme, LumièresPrincipaux intérêts Métaphysique, droit, morale, logique, mathématiques, physique, astronomieŒuvres principales Philosophia prima, sive Ontologia Philosophia rationalis...

 

Title of the wife of the president of Namibia First Lady of NamibiaIncumbentSustjie Mbumbasince February 4, 2024Inaugural holderKovambo NujomaFormationMarch 21, 1990 First Lady of Namibia[1] is the title of the wife of the president of Namibia. There have been three first ladies (and presidents) since Namibia's independence in 1990. Namibia currently does not have any first lady since February 4, 2024. After President Hage Geingob dies. First ladies of Namibia No. Portrait Name(...

Questa voce sull'argomento cestisti turchi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Melih Mahmutoğlu Mahmutoğlu con la maglia del Fenerbahçe Nazionalità  Turchia Altezza 191 cm Peso 85 kg Pallacanestro Ruolo Guardia Squadra  Fenerbahçe CarrieraSquadre di club 2008-2010 Darüşşafaka58 (393)2010-2011 Galatasaray12 (44)2011-2012 Antalya BŞB30 (354)2012-2013 Erd...

 

Place in Western Area, Sierra LeoneBathurstBathurstLocation in Sierra LeoneCoordinates: 8°20′N 13°04′W / 8.333°N 13.067°W / 8.333; -13.067Country Sierra LeoneRegionWestern AreaDistrictWestern Area Rural DistrictGovernment • TypeVillage council • Village HeadSamuel JS Woodie [1] [2]Time zoneUTC-5 (GMT) Bathurst is a mountainous village in the Western Area Rural District of Sierra Leone. Bathurst seats at 541 feet above sea level,[1 ...

 

Glynis BarberBarber, 2007LahirGlynis van der Riet25 Oktober 1955 (umur 68)Durban, Afrika SelatanPekerjaanAktrisTahun aktif1978–presentSuami/istriPaul Antony-Barber ​ ​(m. 1976; c. 1979)​ Michael Brandon ​ ​(m. 1989)​Anak1Situs webwww.glynisbarber.com Glynis Barber (nee Glynis van der Riet;[1] lahir 25 Oktober 1955) adalah seorang aktris berkebangsaan Afrika Selatan. Dia dikenal karena peran...

In this Burmese name, the given name is Shwe Pyi Aye. There is no family name. Alinka KyawswaShwe Pyi Ayeရွှေပြည်အေးBornTin Maung Aye13 February 1909Rangoon, British rule in BurmaDied22 October 1977 (1977-10-23) (aged 68)Yangon, BurmaAlma materRangoon University, Yale UniversityOccupation(s)Musician, ComposerParent(s)U Nu (father)Daw Hlaing (mother)AwardsAlinkar Kyawswar Shwe Pyi Aye (Burmese: ရွှေပြည်အေး; born Tin Maung Aye 13 Februa...

 

This article is about the cardinal. For his younger contemporary, see Guillaume Fillastre (died 1473). Guillaume Fillastre in stained glass at Le Mans Cathedral Guillaume Fillastre, sometimes called the Elder (1348 – 6 November 1428), was a French cardinal, canonist, humanist, and geographer. Life Fillastre was born at La Suze, Maine. After graduating as doctor juris utriusque, Fillastre taught jurisprudence at Reims, and in 1392 was appointed dean of its metropolitan chapter. During the We...

 

Filipino government official and physician (born 1957) In this Philippine name, the middle name or maternal family name is Tiongson and the surname or paternal family name is Duque. The HonorableFrancisco T. Duque IIIM.D., MScDuque in 201825th Secretary of HealthIn officeOctober 26, 2017 – June 30, 2022PresidentRodrigo DutertePreceded byPaulyn UbialSucceeded byMaria Rosario Vergeire (OIC)In officeJune 1, 2005 – September 1, 2009PresidentGloria Macapagal ArroyoPr...

Large, black, passerine bird of the Northern Hemisphere Corvus corax redirects here. For the German band, see Corvus Corax (band). For the butterfly called the common raven, see Papilio castor. Common ravenTemporal range: Middle Pleistocene–Recent PreꞒ Ꞓ O S D C P T J K Pg N ↓ Near the Tower of London, England Call recorded in Grand Teton National Park Conservation status Least Concern  (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2016) حادث رحلة خطوط إيرفرانس 2005 طائرة سود أفياسيون كارافيل التابعة للخطوط الفرنسية، شبيهة للتي تحطمت. ملخص الحادث التاريخ 12 أيلول (سبتمبر) 1961 البلد المغرب  نوع ا...

 

19th century military conflict centered on the Russian and Ottoman empire See also: Russo-Persian War (1826–1828) This article needs more complete citations for verification. Please help add missing citation information so that sources are clearly identifiable. (November 2022) (Learn how and when to remove this message)This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and r...

United States historic placePhiladelphia Toboggan Company Carousel #6U.S. National Register of Historic PlacesU.S. National Historic Landmark The carousel in 2009Show map of ColoradoShow map of the United StatesLocationKit Carson County Fairgrounds815 15th StBurlington, Colorado 80807Coordinates39°18′36″N 102°16′10″W / 39.31000°N 102.26944°W / 39.31000; -102.26944Built1905ArchitectPhiladelphia Toboggan CompanyNRHP reference No.78000861Significant...

 

شعب الصيحى (محلة) تقسيم إداري البلد  اليمن المحافظة محافظة إب المديرية مديرية السبرة العزلة عزلة مطاية القرية قرية حلاكة السكان التعداد السكاني 2004 السكان 21   • الذكور 11   • الإناث 10   • عدد الأسر 3   • عدد المساكن 4 معلومات أخرى التوقيت توقيت اليمن (+3 غرينيتش) تعد...