Intermediate logic

In mathematical logic, a superintuitionistic logic is a propositional logic extending intuitionistic logic. Classical logic is the strongest consistent superintuitionistic logic; thus, consistent superintuitionistic logics are called intermediate logics (the logics are intermediate between intuitionistic logic and classical logic).[1]

Definition

A superintuitionistic logic is a set L of propositional formulas in a countable set of variables pi satisfying the following properties:

1. all axioms of intuitionistic logic belong to L;
2. if F and G are formulas such that F and FG both belong to L, then G also belongs to L (closure under modus ponens);
3. if F(p1, p2, ..., pn) is a formula of L, and G1, G2, ..., Gn are any formulas, then F(G1, G2, ..., Gn) belongs to L (closure under substitution).

Such a logic is intermediate if furthermore

4. L is not the set of all formulas.

Properties and examples

There exists a continuum of different intermediate logics and just as many such logics exhibit the disjunction property (DP). Superintuitionistic or intermediate logics form a complete lattice with intuitionistic logic as the bottom and the inconsistent logic (in the case of superintuitionistic logics) or classical logic (in the case of intermediate logics) as the top. Classical logic is the only coatom in the lattice of superintuitionistic logics; the lattice of intermediate logics also has a unique coatom, namely SmL[citation needed].

The tools for studying intermediate logics are similar to those used for intuitionistic logic, such as Kripke semantics. For example, Gödel–Dummett logic has a simple semantic characterization in terms of total orders. Specific intermediate logics may be given by semantical description.

Others are often given by adding one or more axioms to

  • Intuitionistic logic (usually denoted as intuitionistic propositional calculus IPC, but also Int, IL or H)

Examples include:

  • Classical logic (CPC, Cl, CL):
= IPC + ¬¬pp (Double-negation elimination, DNE)
= IPC + (¬pp) → p (Consequentia mirabilis)
= IPC + p ∨ ¬p (Principle of excluded middle, PEM)

Generalized variants of the above (but actually equivalent principles over intuitionistic logic) are, respectively,

= IPC + (¬p → ¬q) → (qp) (inverse contraposition principle)
= IPC + ((pq) → p) → p (Pierce's principle PP, compare to Consequentia mirabilis)
= IPC + (qp) → ((¬qp) → p) (another schema generalizing Consequentia mirabilis)
= IPC + p ∨ (pq) (following from PEM via principle of explosion)
  • Smetanich's logic (SmL):
= IPC + (¬qp) → (((pq) → p) → p) (a conditional PP)
= IPC + (pq) ∨ (qp) (Dirk Gently’s principle, DGP, or linearity)
= IPC + (p → (qr)) → ((pq) ∨ (pr)) (a form of independence of premise IP)
= IPC + ((pq) → r) → ((pr) ∨ (qr)) (Generalized 4th De Morgan's law)
  • Bounded depth 2 (BD2, see generalizations below. Compare with p ∨ (pq)):
= IPC + p ∨ (p → (q ∨ ¬q))
= IPC + ¬¬p ∨ ¬p (weak PEM, a.k.a. WPEM)
= IPC + (pq) ∨ (¬p → ¬q) (a weak DGP)
= IPC + (p → (q ∨ ¬r)) → ((pq) ∨ (p → ¬r)) (a variant, with negation, of a form of IP)
= IPC + ¬(pq) → (¬q ∨ ¬p) (4th De Morgan's law)
= IPC + ((¬¬pp) → (p ∨ ¬p)) → (¬¬p ∨ ¬p) (a conditional WPEM)
= IPC + (¬p → (qr)) → ((¬pq) ∨ (¬pr)) (the other variant, with negation, of a form of IP)

This list is, for the most part, not any sort of ordering. For example, LC is known not to prove all theorems of SmL, but it does not directly compare in strength to BD2. Likewise, e.g., KP does not compare to SL. The list of equalities for each logic is by no means exhaustive either. For example, as with WPEM and De Morgan's law, several forms of DGP using conjunction may be expressed.

Even (¬¬p ∨ ¬p) ∨ (¬¬pp), a further weakening of WPEM, is not a theorem of IPC.

It may also be worth noting that, taking all of intuitionistic logic for granted, the equalities notably rely on explosion. For example, over mere minimal logic, as principle PEM is already equivalent to Consequentia mirabilis, but there does not imply the stronger DNE, nor PP, and is not comparable to DGP.

Going on:

  • logics of bounded depth (BDn):
IPC + pn ∨ (pn → (pn−1 ∨ (pn−1 → ... → (p2 ∨ (p2 → (p1 ∨ ¬p1)))...)))
LC + BDn−1
= LC + BCn−1
  • logics of bounded cardinality (BCn):
  • logics of bounded top width (BTWn):
  • logics of bounded width, also known as the logic of bounded anti-chains, Ono (1972) (BWn, BAn):
  • logics of bounded branching, Gabbay & de Jongh (1969, 1974) (Tn, BBn):

Furthermore:

  • Realizability logics
  • Medvedev's logic of finite problems (LM, ML):[3][4][5] defined semantically as the logic of all frames of the form for finite sets X ("Boolean hypercubes without top"), not known to be recursively axiomatizable
  • ...

The propositional logics SL and KP do have the disjunction property DP. Kleene realizability logic and the strong Medvedev's logic do have it as well. There is no unique maximal logic with DP on the lattice. Note that if a consistent theory validates WPEM but still has independent statements when assuming PEM, then it cannot have DP.

Semantics

Given a Heyting algebra H, the set of propositional formulas that are valid in H is an intermediate logic. Conversely, given an intermediate logic it is possible to construct its Lindenbaum–Tarski algebra, which is then a Heyting algebra.

An intuitionistic Kripke frame F is a partially ordered set, and a Kripke model M is a Kripke frame with valuation such that is an upper subset of F. The set of propositional formulas that are valid in F is an intermediate logic. Given an intermediate logic L it is possible to construct a Kripke model M such that the logic of M is L (this construction is called the canonical model). A Kripke frame with this property may not exist, but a general frame always does.

Relation to modal logics

Let A be a propositional formula. The Gödel–Tarski translation of A is defined recursively as follows:

If M is a modal logic extending S4 then ρM = {A | T(A) ∈ M} is a superintuitionistic logic, and M is called a modal companion of ρM. In particular:

  • IPC = ρS4
  • KC = ρS4.2
  • LC = ρS4.3
  • CPC = ρS5

For every intermediate logic L there are many modal logics M such that L = ρM.

See also

Notes

  1. ^ "Intermediate logic", Encyclopedia of Mathematics, EMS Press, 2001 [1994].
  2. ^ Terwijn 2006.
  3. ^ Medvedev 1962.
  4. ^ Medvedev 1963.
  5. ^ Medvedev 1966.

References

Read other articles:

Johann Martin Chladenius Johann Martin Chladni latinizzato Chladenius (Lutherstadt Wittenberg, 17 aprile 1710 – Erlangen, 10 settembre 1759) è stato un teologo e storico tedesco che nell'ambito del razionalismo settecentesco di Gottfried Leibniz e Christian Wolff, è considerato il fondatore di una nuova ermeneutica che nella sua opera Einleitung zur richtigen Auslegung vernünftiger Reden und Schriften (Guida alla retta interpretazione di scritti ragionevoli) , egli definisce come hermene...

Marquesado de Villa Real de Purullena Corona marquesalPrimer titular María de Benavides de la Cueva y SandovalConcesión Felipe IV19 de agosto de 1627Actual titular Miguel de Torres y Topete[1]​[editar datos en Wikidata] El marquesado de Villa Real de Purullena es un título nobiliario español creado por Felipe IV, el 19 de agosto de 1627, a favor de María de Benavides de la Cueva y Sandoval, hija del I marqués de Jabalquinto. Su nombre se refiere al municipio andaluz de P...

ЛідрезенLidrezing   Країна  Франція Регіон Гранд-Ест  Департамент Мозель  Округ Саррбур-Шато-Сален Кантон Дьєз Код INSEE 57401 Поштові індекси 57340 Координати 48°53′02″ пн. ш. 6°41′55″ сх. д.H G O Висота 242 - 346 м.н.р.м. Площа 10,04 км² Населення 84 (01-2020[1]) Густота 8,57 ос./км...

Transportasi Umum Hong Kong Hong Kong memiliki jaringan transportasi yang sangat maju dan canggih, meliputi kendaraan umum dan pribadi. Menurut Survei Karakteristik Perjalanan Pemerintah Hong Kong, lebih dari 90% perjalanan harian berada di angkutan umum, tertinggi di dunia.[1] Namun, Komite Penasehat Transportasi pada tahun 2014 mengeluarkan laporan pada banyak memperburuk masalah kemacetan di Hong Kong dan menunjuk pada pertumbuhan berlebihan dari mobil pribadi selama 10-15 tahun te...

MLI — — — Mali, dessen NOK, das Comité National Olympique et Sportif du Mali, 1962 gegründet und 1963 vom IOC anerkannt wurde, nimmt seit 1964 an Olympischen Sommerspielen teil. 1976 schloss man sich dem afrikanischen Boykott der Spiele von Montreal an. Auf Teilnahmen an Winterspielen wurde bislang verzichtet. Bislang konnte keine Medaille gewonnen werden. Inhaltsverzeichnis 1 Übersicht 2 Übersicht der Teilnehmer 2.1 Sommerspiele 2.2 Winterspiele 3 Medaillengewinner 3.1 Goldmedaille...

كوم دفشو  -  قرية مصرية -  تقسيم إداري البلد  مصر المحافظة محافظة البحيرة المركز كفر الدوار المسؤولون السكان التعداد السكاني 11584 نسمة (إحصاء 2006) معلومات أخرى التوقيت ت ع م+02:00  تعديل مصدري - تعديل   قرية كوم دفشو هي إحدى القرى التابعة لمركز كفر الدوار في محافظة...

Wapen van de familie de Borrekens Kasteel de Borrekens in Vorselaar De Borrekens is een Zuid-Nederlandse adellijke familie. Geschiedenis In 1716 werd aan Engelbertus-Zeger Borrekens adelsbevestiging verleend (adelsverheffing voor zo veel nodig) en de titel ridder van het Heilige Roomse Rijk, overdraagbaar op alle mannelijke afstammelingen. Het diploma werd volgens de regels in de Oostenrijkse Nederlanden geregistreerd, maar toch werd het op 24 juli 1734 bij decreet herroepen. Niettemin werd e...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) هارولد هارتشورن معلومات شخصية الميلاد 8 سبتمبر 1891  نيويورك  تاريخ الوفاة 15 فبراير 1961 (69 سنة)   مكان الدفن مقبرة غرين-وود  مواطنة الولايات المتحدة  ا

Kabupaten Kepulauan TalaudKabupatenMonumen Yesus Memberkati Melonguane LambangMotto: Talaud: Sansiote Sampate Pate<br (Kebersamaan dalam satu Kesatuan)PetaKabupaten Kepulauan TalaudPetaTampilkan peta SulawesiKabupaten Kepulauan TalaudKabupaten Kepulauan Talaud (Indonesia)Tampilkan peta IndonesiaKoordinat: 4°18′42″N 126°46′51″E / 4.31178°N 126.78085°E / 4.31178; 126.78085Negara IndonesiaProvinsiSulawesi UtaraTanggal berdiri02 Juli 2002Dasar huku...

Russian tennis player This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Alexey Vatutin – news · newspapers · books · scholar · JSTOR (October 2015) (Learn how and when to remove this template mess...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Humberto de Campos journalist – news · newspapers · books · scholar · JSTOR (April 2017) (Learn how and when to remove this template message) Humberto de CamposBornOctober 25, 1886MiritibaDiedDecember 5, 1934Rio de JaneiroOccupationsjournalistpoliticianwri...

Badminton tournament2007 Sudirman CupTournament detailsDates11–17 JuneEdition10thLevelInternationalVenueScotstoun International Sports ArenaLocationGlasgow, Scotland ← 2005 Beijing 2009 Guangzhou → The 2007 Sudirman Cup is the 10th tournament of the World Mixed Team Badminton Championships of Sudirman Cup. It was held from 11 to 17 June 2007 in Glasgow, Scotland. China won for the sixth time and second in a row after beating Indonesia 3–0 in the final. Host city selection Scotland and...

Italian sprinter Jacques RiparelliPersonal informationNationalityItalianBorn (1983-03-27) 27 March 1983 (age 40)Yaoundé, CameroonHeight1.83 m (6 ft 0 in)Weight81 kg (179 lb)SportCountry ItalySportAthleticsEventSprintClubC.S. Aeronautica MilitareAchievements and titlesPersonal best 100 m: 10.11 (2015) Medal record Mediterranean Games 2013 Mersin 4×100 m relay Jacques Riparelli (born 27 March 1983 in Yaoundé, Cameroon) is a track and field sprint athlete who com...

114th edition of Major League Baseball's championship series For other uses, see 2018 World Series (disambiguation). 2018 World Series Team (Wins) Manager(s) Season Boston Red Sox (4) Alex Cora 108–54 (.667), GA: 8 Los Angeles Dodgers (1) Dave Roberts 92–71 (.564), GA: 1DatesOctober 23–28VenueFenway Park (Boston)Dodger Stadium (Los Angeles)MVPSteve Pearce (Boston)UmpiresTed Barrett (crew chief), Fieldin Culbreth (Games 3–5), Kerwin Danley, Chad Fairchild, Jeff Nelson, Jim Reynolds, Ti...

Polish sports club For the basketball sections of the club, see Polonia Warsaw (basketball) and Polonia Warsaw (women's basketball). Football clubPolonia WarszawaFull namePolonia Warszawa S.A.Nickname(s)Czarne koszule (Blackshirts) – men's teamCzarne syrenki (Black Mermaids) – women's teamShort nameKSP (Klub Sportowy Polonia)Founded19 November 1911; 112 years ago (1911-11-19)GroundGeneral Kazimierz Sosnkowski Municipal StadiumCapacity7,150[1]OwnerGrégoire NitotC...

Komputer tablet (ringkasnya disebut tablet) atau sabak elektronik adalah suatu komputer mudah alih lengkap yang seluruhnya berupa layar sentuh datar.[1] Ciri pembeda utamanya adalah penggunaan layar sebagai peranti masukan dengan menggunakan stilus, pena digital, atau ujung jari, alih-alih menggunakan papan ketik atau tetikus.[2] Microsoft memperkenalkan versi Windows XP untuk komputer tablet yang disebutnya Tablet PC pada tahun 2000, sedangkan Apple baru meluncurkan versi kom...

Indonesian real estate development company This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this template message) Sinar Mas LandTypeSubsidiaryIndustryReal...

2011 film by Radha Mohan PayanamTheatrical release posterDirected byRadha MohanWritten byRadha MohanT. J. Gnanavel(Tamil dialogues)Anuradha Umarji(Telugu dialogues)Produced byPrakash RajDil RajuStarringNagarjunaPrakash RajPoonam KaurSana KhanRishiBrahmanandamThalaivasal VijayCinematographyK. V. GuhanEdited byKishore Te (Tamil version)Marthand K. Venkatesh(Telugu version)Music byPravin ManiProductioncompaniesPrakash Raj Productions (Tamil version)Matinee Entertainment (Telugu version)Distribut...

Not to be confused with Chen Guangyuan. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tan Goan-kong – news · newspapers · books · scholar · JSTOR (January 2017) (Learn how and when to remove this template message) In this Chinese name, the family name is Tan. Chen Yuanguang陳元光The Zhishanyan Huijigong...

Esta biografia de uma pessoa viva cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir fontes confiáveis e independentes. Material controverso que esteja sem fontes deve ser imediatamente removido, especialmente se for de natureza difamatória.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Fevereiro de 2015) Sandra Oh오미주 (Oh Mi-joo) Sandra OhSandra em 2016 Nome completo Sandra Miju Oh[1] Outros nomes S...