Łukasiewicz logic

In mathematics and philosophy, Łukasiewicz logic (/ˌwʊkəˈʃɛvɪ/ WUUK-ə-SHEV-itch, Polish: [wukaˈɕɛvitʂ]) is a non-classical, many-valued logic. It was originally defined in the early 20th century by Jan Łukasiewicz as a three-valued modal logic;[1] it was later generalized to n-valued (for all finite n) as well as infinitely-many-valued (0-valued) variants, both propositional and first order.[2] The ℵ0-valued version was published in 1930 by Łukasiewicz and Alfred Tarski; consequently it is sometimes called the Łukasiewicz–Tarski logic.[3] It belongs to the classes of t-norm fuzzy logics[4] and substructural logics.[5]

Łukasiewicz logic was motivated by Aristotle's suggestion that bivalent logic was not applicable to future contingents, e.g. the statement "There will be a sea battle tomorrow". In other words, statements about the future were neither true nor false, but an intermediate value could be assigned to them, to represent their possibility of becoming true in the future.

This article presents the Łukasiewicz(–Tarski) logic in its full generality, i.e. as an infinite-valued logic. For an elementary introduction to the three-valued instantiation Ł3, see three-valued logic.

Language

The propositional connectives of Łukasiewicz logic are ("implication"), and the constant ("false"). Additional connectives can be defined in terms of these:

The and connectives are called weak disjunction and conjunction, because they are non-classical, as the law of excluded middle does not hold for them. In the context of substructural logics, they are called additive connectives. They also correspond to lattice min/max connectives.

In terms of substructural logics, there are also strong or multiplicative disjunction and conjunction connectives, although these are not part of Łukasiewicz's original presentation:

There are also defined modal operators, using the Tarskian Möglichkeit:

Axioms

The original system of axioms for propositional infinite-valued Łukasiewicz logic used implication and negation as the primitive connectives, along with modus ponens:

Propositional infinite-valued Łukasiewicz logic can also be axiomatized by adding the following axioms to the axiomatic system of monoidal t-norm logic:

Divisibility
Double negation

That is, infinite-valued Łukasiewicz logic arises by adding the axiom of double negation to basic fuzzy logic (BL), or by adding the axiom of divisibility to the logic IMTL.

Finite-valued Łukasiewicz logics require additional axioms.

Proof Theory

A hypersequent calculus for three-valued Łukasiewicz logic was introduced by Arnon Avron in 1991.[6]

Sequent calculi for finite and infinite-valued Łukasiewicz logics as an extension of linear logic were introduced by A. Prijatelj in 1994.[7] However, these are not cut-free systems.

Hypersequent calculi for Łukasiewicz logics were introduced by A. Ciabattoni et al in 1999.[8] However, these are not cut-free for finite-valued logics.

A labelled tableaux system was introduced by Nicola Olivetti in 2003.[9]

A hypersequent calculus for infinite-valued Łukasiewicz logic was introduced by George Metcalfe in 2004.[10]

Real-valued semantics

Infinite-valued Łukasiewicz logic is a real-valued logic in which sentences from sentential calculus may be assigned a truth value of not only 0 or 1 but also any real number in between (e.g. 0.25). Valuations have a recursive definition where:

  • for a binary connective
  • and

and where the definitions of the operations hold as follows:

  • Implication:
  • Equivalence:
  • Negation:
  • Weak conjunction:
  • Weak disjunction:
  • Strong conjunction:
  • Strong disjunction:
  • Modal functions:

The truth function of strong conjunction is the Łukasiewicz t-norm and the truth function of strong disjunction is its dual t-conorm. Obviously, and , so if , then while the respective logically-equivalent propositions have .

The truth function is the residuum of the Łukasiewicz t-norm. All truth functions of the basic connectives are continuous.

By definition, a formula is a tautology of infinite-valued Łukasiewicz logic if it evaluates to 1 under each valuation of propositional variables by real numbers in the interval [0, 1].

Finite-valued and countable-valued semantics

Using exactly the same valuation formulas as for real-valued semantics Łukasiewicz (1922) also defined (up to isomorphism) semantics over

  • any finite set of cardinality n ≥ 2 by choosing the domain as { 0, 1/(n − 1), 2/(n − 1), ..., 1 }
  • any countable set by choosing the domain as { p/q | 0 ≤ pq where p is a non-negative integer and q is a positive integer }.

General algebraic semantics

The standard real-valued semantics determined by the Łukasiewicz t-norm is not the only possible semantics of Łukasiewicz logic. General algebraic semantics of propositional infinite-valued Łukasiewicz logic is formed by the class of all MV-algebras. The standard real-valued semantics is a special MV-algebra, called the standard MV-algebra.

Like other t-norm fuzzy logics, propositional infinite-valued Łukasiewicz logic enjoys completeness with respect to the class of all algebras for which the logic is sound (that is, MV-algebras) as well as with respect to only linear ones. This is expressed by the general, linear, and standard completeness theorems:[4]

The following conditions are equivalent:
  • is provable in propositional infinite-valued Łukasiewicz logic
  • is valid in all MV-algebras (general completeness)
  • is valid in all linearly ordered MV-algebras (linear completeness)
  • is valid in the standard MV-algebra (standard completeness).

Here valid means necessarily evaluates to 1.

Font, Rodriguez and Torrens introduced in 1984 the Wajsberg algebra as an alternative model for the infinite-valued Łukasiewicz logic.[11]

A 1940s attempt by Grigore Moisil to provide algebraic semantics for the n-valued Łukasiewicz logic by means of his Łukasiewicz–Moisil (LM) algebra (which Moisil called Łukasiewicz algebras) turned out to be an incorrect model for n ≥ 5. This issue was made public by Alan Rose in 1956. C. C. Chang's MV-algebra, which is a model for the ℵ0-valued (infinitely-many-valued) Łukasiewicz–Tarski logic, was published in 1958. For the axiomatically more complicated (finite) n-valued Łukasiewicz logics, suitable algebras were published in 1977 by Revaz Grigolia and called MVn-algebras.[12] MVn-algebras are a subclass of LMn-algebras, and the inclusion is strict for n ≥ 5.[13] In 1982 Roberto Cignoli published some additional constraints that added to LMn-algebras produce proper models for n-valued Łukasiewicz logic; Cignoli called his discovery proper Łukasiewicz algebras.[14]

Complexity

Łukasiewicz logics are co-NP complete.[15]

Łukasiewicz logics can be seen as modal logics, a type of logic that addresses possibility,[16] using the defined operators,

A third doubtful operator has been proposed, .[17]

From these we can prove the following theorems, which are common axioms in many modal logics:

We can also prove distribution theorems on the strong connectives:

However, the following distribution theorems also hold:

In other words, if , then , which is counter-intuitive.[18][19] However, these controversial theorems have been defended as a modal logic about future contingents by A. N. Prior.[20] Notably, .

References

  1. ^ Łukasiewicz J., 1920, O logice trójwartościowej (in Polish). Ruch filozoficzny 5:170–171. English translation: On three-valued logic, in L. Borkowski (ed.), Selected works by Jan Łukasiewicz, North–Holland, Amsterdam, 1970, pp. 87–88. ISBN 0-7204-2252-3
  2. ^ Hay, L.S., 1963, Axiomatization of the infinite-valued predicate calculus. Journal of Symbolic Logic 28:77–86.
  3. ^ Lavinia Corina Ciungu (2013). Non-commutative Multiple-Valued Logic Algebras. Springer. p. vii. ISBN 978-3-319-01589-7. citing Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. Comp. Rend. Soc. Sci. et Lettres Varsovie Cl. III 23, 30–50 (1930).
  4. ^ a b Hájek P., 1998, Metamathematics of Fuzzy Logic. Dordrecht: Kluwer.
  5. ^ Ono, H., 2003, "Substructural logics and residuated lattices — an introduction". In F.V. Hendricks, J. Malinowski (eds.): Trends in Logic: 50 Years of Studia Logica, Trends in Logic 20: 177–212.
  6. ^ A. Avron, "Natural 3-valued Logics– Characterization and Proof Theory", Journal of Symbolic Logic 56(1), doi:10.2307/2274919
  7. ^ A. Prijateli, "Bounded contraction and Gentzen-style formulation of Łukasiewicz logics", Studia Logica 57: 437-456, 1996
  8. ^ A. Ciabattoni, D.M. Gabbay, N. Olivetti, "Cut-free proof systems for logics of weak excluded middle" Soft Computing 2 (1999) 147—156
  9. ^ N. Olivetti, "Tableaux for Łukasiewicz Infinite-valued Logic", Studia Logica volume 73, pages 81–111 (2003)
  10. ^ D. Gabbay and G. Metcalfe and N. Olivetti, "Hypersequents and Fuzzy Logic", Revista de la Real Academia de Ciencias 98 (1), pages 113-126 (2004).
  11. ^ http://journal.univagora.ro/download/pdf/28.pdf citing J. M. Font, A. J. Rodriguez, A. Torrens, Wajsberg Algebras, Stochastica, VIII, 1, 5-31, 1984
  12. ^ Lavinia Corina Ciungu (2013). Non-commutative Multiple-Valued Logic Algebras. Springer. pp. vii–viii. ISBN 978-3-319-01589-7. citing Grigolia, R.S.: "Algebraic analysis of Lukasiewicz-Tarski’s n-valued logical systems". In: Wójcicki, R., Malinkowski, G. (eds.) Selected Papers on Lukasiewicz Sentential Calculi, pp. 81–92. Polish Academy of Sciences, Wroclav (1977)
  13. ^ Iorgulescu, A.: Connections between MVn-algebras and n-valued Łukasiewicz–Moisil algebras Part I. Discrete Mathematics 181, 155–177 (1998) doi:10.1016/S0012-365X(97)00052-6
  14. ^ R. Cignoli, Proper n-Valued Łukasiewicz Algebras as S-Algebras of Łukasiewicz n-Valued Propositional Calculi, Studia Logica, 41, 1982, 3-16, doi:10.1007/BF00373490
  15. ^ A. Ciabattoni, M. Bongini and F. Montagna, Proof Search and Co-NP Completeness for Many-Valued Logics. Fuzzy Sets and Systems.
  16. ^ "Modal Logic: Contemporary View | Internet Encyclopedia of Philosophy". Retrieved 2024-05-03.
  17. ^ Clarence Irving Lewis and Cooper Harold Langford. Symbolic Logic. Dover, New York, second edition, 1959.
  18. ^ Robert Bull and Krister Segerberg. Basic modal logic. In Dov M. Gabbay and Franz Guenthner, editors, Handbook of Philosophical Logic, volume 2. D. Reidel Publishing Company, Lancaster, 1986
  19. ^ Alasdair Urquhart. An interpretation of many-valued logic. Zeitschr. f. math. Logik und Grundlagen d. Math., 19:111–114, 1973.
  20. ^ A.N. Prior. Three-valued logic and future contingents. 3(13):317–26, October 1953.

Further reading

  • Rose, A.: 1956, Formalisation du Calcul Propositionnel Implicatif ℵ0 Valeurs de Łukasiewicz, C. R. Acad. Sci. Paris 243, 1183–1185.
  • Rose, A.: 1978, Formalisations of Further ℵ0-Valued Łukasiewicz Propositional Calculi, Journal of Symbolic Logic 43(2), 207–210. doi:10.2307/2272818
  • Cignoli, R., “The algebras of Lukasiewicz many-valued logic - A historical overview,” in S. Aguzzoli et al.(Eds.), Algebraic and Proof-theoretic Aspects of Non-classical Logics, LNAI 4460, Springer, 2007, 69-83. doi:10.1007/978-3-540-75939-3_5

Read other articles:

طائر على الطريق (فيلم)معلومات عامةتاريخ الصدور 14 سبتمبر 1981مدة العرض 130 دقيقةاللغة الأصلية العربيةالبلد  مصرالطاقمالمخرج محمد خانالكاتب محمد خانالبطولة فريد شوقيأحمد زكيفردوس عبد الحميدصناعة سينمائيةالمنتج المصرية للسينماتعديل - تعديل مصدري طائر على الطريق هو فيلم مصر

Energy recovery heat exchanger A regenerative thermal oxidizer (RTO) is an example of a waste heat recovery unit that utilizes a regenerative process. A waste heat recovery unit (WHRU) is an energy recovery heat exchanger that transfers heat from process outputs at high temperature to another part of the process for some purpose, usually increased efficiency. The WHRU is a tool involved in cogeneration. Waste heat may be extracted from sources such as hot flue gases from a diesel generator, s...

Joel Benjamin Untuk penyanyi dan penari Broadway, lihat Joel Benjamin (penyanyi). Joel Benjamin (lahir 11 Maret 1964) ialah seorang Grandmaster catur dan sekarang menjadi pecatur aktif berperingkat paling tinggi yang lahir di Amerika Serikat.[1] Pada tahun 1998 Benjamin terpilih sebagai “Grandmaster of the Year” oleh U.S. Chess Federation. Dari bulan April 2007, peringkat Elonya adalah 2576, menjadikannya pemain urutan ke-12 di AS dan pecatur berperingkat tertinggi ke-214 di dunia...

ولاد العربي غبال تقسيم إداري البلد المغرب  الجهة الرباط سلا القنيطرة الإقليم سيدي قاسم الدائرة ورغة الجماعة القروية لمرابيح المشيخة الزوايد السكان التعداد السكاني 222 نسمة (إحصاء 2004)   • عدد الأسر 41 معلومات أخرى التوقيت ت ع م±00:00 (توقيت قياسي)[1]،  وت ع م+01:00 (توقيت �...

Cet article est une ébauche concernant l’Égypte et Israël. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Frontière entre l'Égypte et Israël Caractéristiques Délimite Égypte Israël Longueur totale 266 km Historique Création 1948 modifier  La frontière entre l'Égypte et Israël s'étend du golfe d'Aqaba à la bande de Gaza. À l'exception des régions littorales, ce sont des zones dé...

Yutaka Yoshida Datos personalesNacimiento Shizuoka17 de febrero de 1990 (33 años)País JapónNacionalidad(es) JaponesaAltura 1,68 m (5′ 6″)Peso 69 kg (152 lb)Carrera deportivaDeporte FútbolClub profesionalDebut deportivo 2008(Ventforet Kofu)Club Shimizu S-PulseLiga J2 LeaguePosición Defensa[editar datos en Wikidata] Yutaka Yoshida (吉田 豊, Yoshida Yutaka?, Shizuoka, 17 de febrero de 1990) es un futbolista japonés que juega como defensa en el Shimizu S-Puls...

Щодо інших людей з таким самим іменем та прізвищем див. Микола Данилович. Микола Данилович Псевдо Данилович МиколайПомер бл. 1676Країна  Річ ПосполитаПосада староста Перемишльськийd, Q65231957?, червоногородський старостаd, грубешівський старостаd, посол Сейму Речі П

Thiske Gompa bij Leh in Ladakh is een typisch voorbeeld van een Tibetaans boeddhistisch Gompa-ontwerp Een gompa of ling is een religieuze fortificatie die bedoeld is voor boeddhistische leer, vorming en sadhana en kan gezien worden als een samensmelting van een monniken- en nonnenklooster en theologische universiteit. Gompa's zijn te vinden in Tibet, Ladakh (India), Nepal en Bhutan. Het ontwerp en de details van het interieur variëren van regio tot regio, hoewel ze allemaal de meetkundige vo...

Drake Maverick Maverick em 2014 Informações pessoais Nascimento 30 de janeiro de 1983 (40 anos)Birmingham, West Midlands, Inglaterra Carreira na luta livre profissional Nome(s)de ringue Rockstar SpudSpudDrake Maverick Alturaanunciada 1,63 m Pesoanunciado 64 Kg Treinadopor Jack StormChris GilbertDon Charles Estreia 2001 James Curtin (30 de janeiro de 1983)[1] é um lutador de luta livre profissional britânico. Atualmente trabalha para a WWE no NXT, sob o nome de ringue Drake Maver...

Lambang kota Vaslui ialah sebuah kotamadya di Rumania dengan penduduk sebanyak 70.000 jiwa. Vaslui adalah ibu kota provinsi dengan nama yang sama. Kota ini terletak di kawasan historis Moldavia. Pada tahun 1475, Pangeran Ştefan yang Agung dari Moldavia berhasil mengalahkan Kesultanan Usmaniyah dalam Pertempuran Vaslui. Putera daerah Gheorghe Mironescu, Perdana Menteri Rumania pada tahun 1930-an Artikel bertopik geografi atau tempat Rumania ini adalah sebuah rintisan. Anda dapat membantu Wiki...

UK-based consultancy, running an airline and airport review and ranking site SkytraxFormerlyInflight Research ServicesFounded1989HeadquartersLondon, United KingdomWebsiteskytraxratings.com Skytrax (originally known as Inflight Research Services) is a United Kingdom–based consultancy headquartered in London that runs an airline and airport review website.[1] Services Skytrax conducts research for commercial airlines, as well as taking surveys from international travellers, to rate ca...

Sports car race For the IndyCar race, see Indy Grand Prix of Sonoma. Grand Prix of SonomaVenueSonoma RacewayFirst race1976Last race2008Most wins (driver)James Weaver (3)Most wins (team)Dyson Racing (4)Most wins (manufacturer)Porsche (7) The Grand Prix of Sonoma was a sports car race held at Sonoma Raceway (formerly Sears Point Raceway and Infineon Raceway) in Sonoma, California. It began in 1976 as an IMSA GT Championship race, before joining the American Le Mans Series from 1999 to 2005. It ...

Clavaric acid Names Other names 24, 25-Dihydroxy-2-(3-hydroxy-3-methylglutaryl)lanostan-3-one Identifiers 3D model (JSmol) Interactive image ChEMBL ChEMBL452658 ChemSpider 5293553 PubChem CID 6918349 InChI InChI=1S/C36H58O8/c1-21(10-13-27(37)32(4,5)42)22-14-16-36(9)24-11-12-26-31(2,3)30(41)25(44-29(40)20-33(6,43)19-28(38)39)18-34(26,7)23(24)15-17-35(22,36)8/h21-22,25-27,37,42-43H,10-20H2,1-9H3,(H,38,39)/t21-,22-,25-,26+,27?,33?,34-,35-,36+/m1/s1Key: FNHDSKHVYPYDAZ-VCICWZRISA-N SMILES C[C...

Department of Paraguay Department in ParaguayCaazapáDepartment FlagCoat of armsCoordinates: 26°12′S 56°23′W / 26.200°S 56.383°W / -26.200; -56.383Country ParaguayCapitalCaazapáGovernment • GovernorChristian Sosa (ANR)Area • Total9,496 km2 (3,666 sq mi)Population (2002) • Total139,241 • Density15/km2 (38/sq mi)Time zoneUTC-04 (AST) • Summer (DST)UTC-03 (ADT)ISO 3166 codeP...

Peta yang menunjukkan letak San Ildefonso Data sensus penduduk di San Ildefonso Tahun Populasi Persentase 199569.319—200079.9563.11%200793.4382.17% San Ildefonso adalah munisipalitas di provinsi Bulacan, Filipina. Pada tahun 2007, munisipalitas ini memiliki populasi sebesar 93.438 jiwa atau 15.753 rumah tangga. Pembagian wilayah Secara politis San Ildefonso terbagi atas 36 barangay, yaitu: Akle Alagao Anyatam Bagong Barrio Basuit Bubulong Munti Bubulong Malaki Buhol na Mangga Bulusukan Cala...

Boundary of New Territories West constituency from 1998 to 2021, also the mostly-recognised boundary of the region New Territories West (NTW) is the western part of Hong Kong's New Territories, covering Yuen Long, Tuen Mun, Tsuen Wan, Kwai Tsing and the Islands District. History Settlements in the area, except the Islands District, have been connected by the Castle Peak Road since its completion in 1920s, which also links Kowloon and facilitates trading. In 1985, West New Territories and Sout...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Duchess of York – news · newspapers · books · scholar · JSTOR (April 2017) (Learn how and when to remove this template message) Duchess of York is the principal courtesy title held by the wife of the Duke of York. Three of the eleven Dukes of York either did no...

Jewish martyr described in 2 Maccabees 7 Antonio Ciseri's Martyrdom of the Seven Maccabees (1863), depicting the woman with her dead sons. The woman with seven sons was a Jewish martyr described in 2 Maccabees and 7 in other sources, who had seven sons that were arrested (along with her) by Antiochus IV Epiphanes, who forced them to prove their respect to him by consuming pork. When they refused, he tortured and killed the sons one by one in front of the unflinching and stout-hearted mother. ...

Saudi minister of culture Badr bin Abdullah Al SaudOfficial portrait, 2018Saudi Minister of CultureIncumbentAssumed office 2 June 2018MonarchSalmanPrime MinisterSalmanMohammed bin SalmanPreceded byOffice establishedGovernor of the Royal Commission for Al-'UlaIncumbentAssumed office June 2017Appointed byKing Salman ChairmanMohammed bin Salman Personal detailsBorn (1985-08-16) 16 August 1985 (age 38)Riyadh, Saudi ArabiaResidence(s)Riyadh, Saudi ArabiaEducationKing Saud University B...

1956 Singaporean filmHang TuahThe one-sheet for Hang Tuah.Directed byPhani MajumdarWritten by Buyong Adil Jamil Sulong Screenplay byPhani MajumdarStory byMC ff. SheppardBased onHikayat Hang TuahStarring P. Ramlee Ahmad Mahmud Saadiah Zaiton Haji Mahadi Daeng Idris Yusof Latiff CinematographyN. B. VasudevEdited byH. R. NarayanaMusic byP. RamleeProductioncompanyMalay Film ProductionsDistributed byShaw OrganisationRelease date 28 January 1956 (1956-01-28) CountrySingaporeLanguageM...