Derived algebraic geometry

Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras (over ), simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness (e.g., Tor) of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements. Derived algebraic geometry can be thought of as an extension of this idea, and provides natural settings for intersection theory (or motivic homotopy theory[1]) of singular algebraic varieties and cotangent complexes in deformation theory (cf. J. Francis), among the other applications.

Introduction

Basic objects of study in the field are derived schemes and derived stacks. The oft-cited motivation is Serre's intersection formula.[2] In the usual formulation, the formula involves the Tor functor and thus, unless higher Tor vanish, the scheme-theoretic intersection (i.e., fiber product of immersions) does not yield the correct intersection number. In the derived context, one takes the derived tensor product , whose higher homotopy is higher Tor, whose Spec is not a scheme but a derived scheme. Hence, the "derived" fiber product yields the correct intersection number. (Currently this is hypothetical; the derived intersection theory has yet to be developed.)

The term "derived" is used in the same way as derived functor or derived category, in the sense that the category of commutative rings is being replaced with a ∞-category of "derived rings." In classical algebraic geometry, the derived category of quasi-coherent sheaves is viewed as a triangulated category, but it has natural enhancement to a stable ∞-category, which can be thought of as the ∞-categorical analogue of an abelian category.

Definitions

Derived algebraic geometry is fundamentally the study of geometric objects using homological algebra and homotopy. Since objects in this field should encode the homological and homotopy information, there are various notions of what derived spaces encapsulate. The basic objects of study in derived algebraic geometry are derived schemes, and more generally, derived stacks. Heuristically, derived schemes should be functors from some category of derived rings to the category of sets

which can be generalized further to have targets of higher groupoids (which are expected to be modelled by homotopy types). These derived stacks are suitable functors of the form

Many authors model such functors as functors with values in simplicial sets, since they model homotopy types and are well-studied. Differing definitions on these derived spaces depend on a choice of what the derived rings are, and what the homotopy types should look like. Some examples of derived rings include commutative differential graded algebras, simplicial rings, and -rings.

Derived geometry over characteristic 0

Over characteristic 0 many of the derived geometries agree since the derived rings are the same. algebras are just commutative differential graded algebras over characteristic zero. We can then define derived schemes similarly to schemes in algebraic geometry. Similar to algebraic geometry, we could also view these objects as a pair which is a topological space with a sheaf of commutative differential graded algebras. Sometimes authors take the convention that these are negatively graded, so for . The sheaf condition could also be weakened so that for a cover of , the sheaves would glue on overlaps only by quasi-isomorphism.

Unfortunately, over characteristic p, differential graded algebras work poorly for homotopy theory, due to the fact [1]. This can be overcome by using simplicial algebras.

Derived geometry over arbitrary characteristic

Derived rings over arbitrary characteristic are taken as simplicial commutative rings because of the nice categorical properties these have. In particular, the category of simplicial rings is simplicially enriched, meaning the hom-sets are themselves simplicial sets. Also, there is a canonical model structure on simplicial commutative rings coming from simplicial sets.[3] In fact, it is a theorem of Quillen's that the model structure on simplicial sets can be transferred over to simplicial commutative rings.

Higher stacks

It is conjectured there is a final theory of higher stacks which model homotopy types. Grothendieck conjectured these would be modelled by globular groupoids, or a weak form of their definition. Simpson[4] gives a useful definition in the spirit of Grothendieck's ideas. Recall that an algebraic stack (here a 1-stack) is called representable if the fiber product of any two schemes is isomorphic to a scheme.[5] If we take the ansatz that a 0-stack is just an algebraic space and a 1-stack is just a stack, we can recursively define an n-stack as an object such that the fiber product along any two schemes is an (n-1)-stack. If we go back to the definition of an algebraic stack, this new definition agrees.

Spectral schemes

Another theory of derived algebraic geometry is encapsulated by the theory of spectral schemes. Their definition requires a fair amount of technology in order to precisely state.[6] But, in short, spectral schemes are given by a spectrally ringed -topos together with a sheaf of -rings on it subject to some locality conditions similar to the definition of affine schemes. In particular

  1. must be equivalent to the -topos of some topological space
  2. There must exist a cover of such that the induced topos is equivalent to a spectrally ringed topos for some -ring

Moreover, the spectral scheme is called connective if for .

Examples

Recall that the topos of a point is equivalent to the category of sets. Then, in the -topos setting, we instead consider -sheaves of -groupoids (which are -categories with all morphisms invertible), denoted , giving an analogue of the point topos in the -topos setting. Then, the structure of a spectrally ringed space can be given by attaching an -ring . Notice this implies that spectrally ringed spaces generalize -rings since every -ring can be associated with a spectrally ringed site.

This spectrally ringed topos can be a spectral scheme if the spectrum of this ring gives an equivalent -topos, so its underlying space is a point. For example, this can be given by the ring spectrum , called the Eilenberg–Maclane spectrum, constructed from the Eilenberg–MacLane spaces .

Applications

See also

Notes

  1. ^ Khan, Adeel A. (2019). "Brave new motivic homotopy theory I". Geom. Topol. 23: 3647–3685. arXiv:1610.06871. doi:10.2140/gt.2019.23.3647. S2CID 119661301.
  2. ^ Serre intersection formula and derived algebraic geometry?
  3. ^ Mathew, Akhil. "Simplicial Commutative Rings, I" (PDF). Archived (PDF) from the original on 16 June 2019.
  4. ^ Simpson, Carlos (1996-09-17). "Algebraic (geometric) $n$-stacks". arXiv:alg-geom/9609014.
  5. ^ Which can be checked by looking at the diagonal morphism and checking if that itself is representable. Check out https://math.dartmouth.edu/~jvoight/notes/moduli-red-harvard.pdf for more information
  6. ^ Rezk, Charles. "Spectral Algebraic Geometry" (PDF). p. 23 (section 10.6). Archived (PDF) from the original on 2020-04-25.
  7. ^ Arinkin, Dima; Gaitsgory, Dennis (2015). "Singular support of coherent sheaves and the geometric Langlands conjecture". Selecta Math. 21 (1): 1–199. CiteSeerX 10.1.1.763.8289. doi:10.1007/s00029-014-0167-5. S2CID 119136874.

References

Simplicial DAG

Differential graded DAG

  • Eugster, J.; Pridham, J.P. (2021-10-25). "An introduction to derived (algebraic) geometry". arXiv:2109.14594 [math.AG].

En and E -rings

Applications

Quantum Field Theories

Read other articles:

British series about Jeremy Thorpe Not to be confused with A Very British Scandal. A Very English ScandalPromotional posterGenre Historical drama Comedy drama[1][2][3] Based onA Very English Scandalby John PrestonWritten byRussell T DaviesDirected byStephen FrearsStarring Hugh Grant Ben Whishaw ComposerMurray GoldCountry of originUnited KingdomOriginal languageEnglishNo. of episodes3ProductionExecutive producers Dominic Treadwell-Collins Graham Broadbent Pete Czernin D...

 Nota: Para outros significados de Aria, veja Aria (desambiguação). Aria (género) Classificação científica Reino: Plantae Clado: angiospérmicas Clado: eudicotiledóneas Clado: rosídeas Ordem: Rosales Família: Rosaceae Género: Aria (género) Aria (género) é um género botânico pertencente à família Rosaceae.[1] Referências ↑ «NCBI:txid36601». NCBI Taxonomy (em inglês). Consultado em 21 de março de 2022  Este artigo sobre a ordem Rosales, integrado no Projeto Pla...

Une silhouette illustrant un policier frappant une personne, symbolisant la brutalité policière. La violence policière, ou brutalité policière, caractérise l'action violente conduite par des policiers, dans l'exercice de leurs fonctions, envers d'autres personnes hors du cadre défini par la loi. On parle de bavures policières dans les cas les plus graves, en particulier dans les cas conduisant à la mort de la personne attaquée. Sous le terme de violence policière, on regroupe diff�...

Radio Steiermark Hörfunksender (Öffentlich-rechtlich) Empfang analog terrestrisch, Kabel, Satellit Empfangsgebiet Steiermark Sendestart 1. Okt. 1967 Sendeanstalt ORF Intendant Gerhard Koch Liste von Hörfunksendern Radio Steiermark ist das Ö2-Regionalprogramm des ORF für das zweitgrößte österreichische Bundesland, die Steiermark. Traditionelles Programm von Radio Steiermark sind Deutsche und Volkstümliche Schlager, Oldies der 1960er-, 70er-, 80er- und 90er-Jahre, Softpop und Aust...

Municipality of Slovenia Municipality in SloveniaMunicipality of Beltinci Občina BeltinciMunicipality Coat of armsLocation of the Municipality of Beltinci in SloveniaCoordinates: 46°36′N 16°14′E / 46.600°N 16.233°E / 46.600; 16.233Country SloveniaGovernment • MayorMarko ViragArea • Total62.2 km2 (24.0 sq mi)Population (2002)[1] • Total8,256 • Density130/km2 (340/sq mi)Time zo...

PerfumePoster promosiHangul퍼퓸 GenreKomedi romantisFantasiPengembangKBS Drama ProductionDitulis olehChoi Hyun-okSutradaraKim Sang-hwiPemeranShin Sung-rokKo Won-heeCha Ye-ryunKim Min-kyuNegara asalKorea SelatanBahasa asliKoreaJmlh. episode32ProduksiProduserKwon Yong-hanKim Jung-ahPengaturan kameraSingle-cameraDurasi35 menitRumah produksiHoga EntertainmentSignal PicturesDistributorKorean Broadcasting SystemRilisJaringan asliKBS2Format gambar1080i (HDTV)Format audioDolby DigitalRilis asli3 Ju...

2013 single by Arcade Fire ReflektorSingle by Arcade Firefrom the album Reflektor B-sideInstrumental versionReleasedSeptember 9, 2013 (2013-09-09)Recorded2013StudioSonovox (Montreal)Genre Dance-rock indie rock disco Length 7:34 (album version) 4:59 (radio edit) Label Merge Sonovox Songwriter(s) Will Butler Win Butler Régine Chassagne Jeremy Gara Tim Kingsbury Richard Reed Parry Producer(s) Arcade Fire Markus Dravs James Murphy Arcade Fire singles chronology Sprawl II (Mountain...

Cimetières de la GuillotièreLocalisation des deux cimetières en orange : au nord l'ancien cimetière, au sud le nouveau cimetière.Pays FranceCommune LyonTombes 40 000Mise en service cimetière ancien (1822) cimetière nouveau (1859)Coordonnées 45° 44′ 26″ N, 4° 51′ 22″ EIdentifiantsSite web www.lyon.fr/lieu/culte-et-cimetieres/cimetiere-de-la-guillotiere-nouveau.htmlLocalisation sur la carte de LyonLocalisation sur la carte de Francemodif...

Dieser Artikel behandelt das naturwissenschaftliche Fachgebiet Biochemie; zur gleichnamigen Mineralstofflehre siehe Schüßler-Salze. Die Biochemie (zu griechisch βίος bíos ‚Leben‘, und zu „Chemie“) oder biologische Chemie, früher auch physiologische Chemie genannt, ist die Lehre von chemischen Vorgängen in Lebewesen, dem Stoffwechsel. Chemie, Biologie und Medizin sind in der Biochemie eng miteinander verzahnt. Inhaltsverzeichnis 1 Gegenstand 2 Methoden 3 Geschichte 3.1 Anfäng...

The topic of this article may not meet Wikipedia's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: IHeartRadio Countdown – news · newspapers · books · scholar · JSTOR (Februa...

Phoenix merupakan ibu kota dan kota terbesar di Arizona. Pada tahun 2010 terdapat 91 kota besar dan kota kecil di negara bagian Arizona, Amerika Serikat. Sensus tahun 2008 memperkirakan 5.218.713 atau 80,3% dari 6.500.180 penduduk Arizona tinggal di kota-kota di bawah. Mayoritas tinggal di wilayah metropolitan Phoenix, dengan perkiraan penduduk sebesar 4.281.899 (2008).[1] Flagstaff Bisbee Ibukota pertama Arizona, Prescott Maricopa Tombstone Nama Jenis[2] County Populasi (perk...

American educator & politician (1890–1984) Chase WoodhouseSecretary of the House Democratic CaucusIn officeJanuary 3, 1949 – January 3, 1951LeaderJohn McCormackPreceded byPosition establishedSucceeded byEdna KellyMember of the U.S. House of Representativesfrom Connecticut's 2nd districtIn officeJanuary 3, 1949 – January 3, 1951Preceded byHorace Seely-BrownSucceeded byHorace Seely-BrownIn officeJanuary 3, 1945 – January 3, 1947Preceded byJohn ...

2009 single by The Saturdays WorkSingle by The Saturdaysfrom the album Chasing Lights B-sideUnofficialReleased29 June 2009 (2009-06-29)[1]GenreDance-popLength3:13LabelFascinationPolydorSongwriter(s)Ina WroldsenHarry SommerdahlKalle EngströmProducer(s)Harry SommerdahlKalle EngströmThe Saturdays singles chronology Just Can't Get Enough (2009) Work (2009) Forever Is Over (2009) Music videoWork on YouTube Work is a song by British-Irish girl group The Saturdays from their...

Desulo DèsuluKomuneComune di DesuloNegara ItaliaWilayah SardiniaProvinsiNuoro (NU)Pemerintahan • Wali kotaGian Luigi LittarruLuas • Total74,50 km2 (28,76 sq mi)Ketinggian888 m (2,913 ft)Populasi (2016) • Total2,350[1]Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos08032Kode area telepon0784Situs webhttp://www.comune.desulo.nu.it/ Desulo (bahasa Sardinia: Dèsulu) adalah sebuah komune yang ...

2008 video gameInfinite UndiscoveryDeveloper(s)tri-AcePublisher(s)Square Enix[3]Producer(s)Hajime KojimaDesigner(s)Hiroshi OgawaProgrammer(s)Yoshiharu GotandaArtist(s)Yukihiro KajimotoWriter(s)Ryo MizunoShoji GatohComposer(s)Motoi SakurabaEngineASKA[4]Platform(s)Xbox 360ReleaseNA: September 2, 2008AU: September 4, 2008EU: September 5, 2008JP: September 11, 2008[1][2]Genre(s)Action role-playingMode(s)Single-player Infinite Undiscovery (インフィニット ア�...

China Template‑class China portalThis template is within the scope of WikiProject China, a collaborative effort to improve the coverage of China related articles on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.ChinaWikipedia:WikiProject ChinaTemplate:WikiProject ChinaChina-related articlesTemplateThis template does not require a rating on Wikipedia's content assessment scale. Food and drink Templat...

Season of television series Love & Hip Hop: MiamiSeason 1Cover used by the iTunes StoreStarring Trina Prince Amara La Negra Gunplay Veronica Vega Bobby Lytes Shay Johnson Trick Daddy Country of originUnited StatesNo. of episodes12ReleaseOriginal networkVH1Original releaseJanuary 1 (2018-01-01) –March 19, 2018 (2018-03-19)Season chronologyNext →Season 2List of episodes The first season of the reality television series Love & Hip Hop: Miami aired on VH1 from Jan...

Town in Derbyshire, England Human settlement in EnglandHadfieldStation Road – The main street in HadfieldHadfieldLocation within DerbyshirePopulation6,763 (2021 Census)OS grid referenceSK021963DistrictHigh PeakShire countyDerbyshireRegionEast MidlandsCountryEnglandSovereign stateUnited KingdomPost townGLOSSOPPostcode districtSK13Dialling code01457PoliceDerbyshireFireDerbyshireAmbulanceNorth West UK ParliamentHigh Peak List of places UK England Derbysh...

Логотип журнала Drowned in Sound Drowned in Sound (также известен как DiS) — британский электронный журнал, публикующий рецензии, интервью и новостные сообщения на музыкальную тематику. Журнал был основан Шоном Адамсом под названием The Last Resort в 1998 году. Изначально он представлял собой...

Paghimo ni bot Lsjbot. 46°40′54″N 11°53′53″E / 46.68153°N 11.89809°E / 46.68153; 11.89809 San Martino in Badia - St. Martin in Thurn (St. Martin in Thurn) San Martino in Badia Munisipyo Opisyal nga ngaran: Comune di San Martino in Badia Nasod  Italya Rehiyon Trentino-Alto Adige Lalawigan Bolzano Gitas-on 1,136 m (3,727 ft) Tiganos 46°40′54″N 11°53′53″E / 46.68153°N 11.89809°E / 46.68153; 11.89809 Populati...