Derived scheme

In algebraic geometry, a derived scheme is a homotopy-theoretic generalization of a scheme in which classical commutative rings are replaced with derived versions such as differential graded algebras, commutative simplicial rings, or commutative ring spectra.

From the functor of points point-of-view, a derived scheme is a sheaf X on the category of simplicial commutative rings which admits an open affine covering .

From the locally ringed space point-of-view, a derived scheme is a pair consisting of a topological space X and a sheaf either of simplicial commutative rings or of commutative ring spectra[1] on X such that (1) the pair is a scheme and (2) is a quasi-coherent -module.

A derived stack is a stacky generalization of a derived scheme.

Differential graded scheme

Over a field of characteristic zero, the theory is closely related to that of a differential graded scheme.[2] By definition, a differential graded scheme is obtained by gluing affine differential graded schemes, with respect to étale topology.[3] It was introduced by Maxim Kontsevich[4] "as the first approach to derived algebraic geometry."[5] and was developed further by Mikhail Kapranov and Ionut Ciocan-Fontanine.

Connection with differential graded rings and examples

Just as affine algebraic geometry is equivalent (in categorical sense) to the theory of commutative rings (commonly called commutative algebra), affine derived algebraic geometry over characteristic zero is equivalent to the theory of commutative differential graded rings. One of the main example of derived schemes comes from the derived intersection of subschemes of a scheme, giving the Koszul complex. For example, let , then we can get a derived scheme

where

is the étale spectrum.[citation needed] Since we can construct a resolution

the derived ring , a derived tensor product, is the koszul complex . The truncation of this derived scheme to amplitude provides a classical model motivating derived algebraic geometry. Notice that if we have a projective scheme

where we can construct the derived scheme where

with amplitude

Cotangent complex

Construction

Let be a fixed differential graded algebra defined over a field of characteristic . Then a -differential graded algebra is called semi-free if the following conditions hold:

  1. The underlying graded algebra is a polynomial algebra over , meaning it is isomorphic to
  2. There exists a filtration on the indexing set where and for any .

It turns out that every differential graded algebra admits a surjective quasi-isomorphism from a semi-free differential graded algebra, called a semi-free resolution. These are unique up to homotopy equivalence in a suitable model category. The (relative) cotangent complex of an -differential graded algebra can be constructed using a semi-free resolution : it is defined as

Many examples can be constructed by taking the algebra representing a variety over a field of characteristic 0, finding a presentation of as a quotient of a polynomial algebra and taking the Koszul complex associated to this presentation. The Koszul complex acts as a semi-free resolution of the differential graded algebra where is the graded algebra with the non-trivial graded piece in degree 0.

Examples

The cotangent complex of a hypersurface can easily be computed: since we have the dga representing the derived enhancement of , we can compute the cotangent complex as

where and is the usual universal derivation. If we take a complete intersection, then the koszul complex

is quasi-isomorphic to the complex

This implies we can construct the cotangent complex of the derived ring as the tensor product of the cotangent complex above for each .

Remarks

Please note that the cotangent complex in the context of derived geometry differs from the cotangent complex of classical schemes. Namely, if there was a singularity in the hypersurface defined by then the cotangent complex would have infinite amplitude. These observations provide motivation for the hidden smoothness philosophy of derived geometry since we are now working with a complex of finite length.

Tangent complexes

Polynomial functions

Given a polynomial function then consider the (homotopy) pullback diagram

where the bottom arrow is the inclusion of a point at the origin. Then, the derived scheme has tangent complex at is given by the morphism

where the complex is of amplitude . Notice that the tangent space can be recovered using and the measures how far away is from being a smooth point.

Stack quotients

Given a stack there is a nice description for the tangent complex:

If the morphism is not injective, the measures again how singular the space is. In addition, the Euler characteristic of this complex yields the correct (virtual) dimension of the quotient stack. In particular, if we look at the moduli stack of principal -bundles, then the tangent complex is just .

Derived schemes in complex Morse theory

Derived schemes can be used for analyzing topological properties of affine varieties. For example, consider a smooth affine variety . If we take a regular function and consider the section of

Then, we can take the derived pullback diagram

where is the zero section, constructing a derived critical locus of the regular function .

Example

Consider the affine variety

and the regular function given by . Then,

where we treat the last two coordinates as . The derived critical locus is then the derived scheme

Note that since the left term in the derived intersection is a complete intersection, we can compute a complex representing the derived ring as

where is the koszul complex.

Derived critical locus

Consider a smooth function where is smooth. The derived enhancement of , the derived critical locus, is given by the differential graded scheme where the underlying graded ring are the polyvector fields

and the differential is defined by contraction by .

Example

For example, if

we have the complex

representing the derived enhancement of .

Notes

  1. ^ also often called -ring spectra
  2. ^ section 1.2 of Eugster, J.; Pridham, J.P. (2021-10-25). "An introduction to derived (algebraic) geometry". arXiv:2109.14594 [math.AG].
  3. ^ Behrend, Kai (2002-12-16). "Differential Graded Schemes I: Perfect Resolving Algebras". arXiv:math/0212225.
  4. ^ Kontsevich, M. (1994-05-05). "Enumeration of rational curves via torus actions". arXiv:hep-th/9405035.
  5. ^ "Dg-scheme".

References

Read other articles:

Koto BaruNagariMasjid Agung Nurul Mukhlisin Islamic Center Kab. Solok di Koto BaruNegara IndonesiaProvinsiSumatera BaratKabupatenSolokKecamatanKubungKode Kemendagri13.02.10.2001 Koto Baru adalah sebuah nagari di kecamatan Kubung, Kabupaten Solok, provinsi Sumatera Barat, Indonesia. Setelah Kota Solok memisahkan diri dari Kabupaten Solok, Nagari Koto Baru sempat menjadi pusat pemerintahan Kabupaten Solok dari tahun 1979 sampai tahun 2001, sebelum dipindahkan kembali ke daerah Arosuka (kot...

تود روجرز   معلومات شخصية الميلاد 30 سبتمبر 1973 (50 سنة)  سانتا باربارا، كاليفورنيا  الطول 188 سنتيمتر  الجنسية الولايات المتحدة  الحياة العملية المهنة لاعب كرة طائرة،  ولاعب كرة طائرة شاطئية  الرياضة الكرة الطائرة الشاطئية  بلد الرياضة الولايات المتحدة  ا

Rukhsar Rehman adalah aktris film India dan televisi. Rehman membuat debut filmnya pada tahun 1992 di usia 17 tahun dengan peran utama dalam Deepak Anand Yaad Rakhegi Duniya berlawanan dengan Aditya Pancholi[1][2] dan juga muncul di J. K. Bihari Inteha Pyar Ki berlawanan dengan Rishi Kapoor.[3] Namun, atas permintaan ayahnya, ia meninggalkan kariernya dan pindah kembali ke kampung halamannya Rampur di Uttar Pradesh untuk memulai sebuah bisnis pakaian.[4][5&...

فاميلي جونيور معلومات عامة المالك دي اتش اكس ميديا  تاريخ التأسيس 30 نوفمبر 2007  البلد كندا  المقر الرسمي تورونتو  الموقع الرسمي الموقع الرسمي (الإنجليزية)  تعديل مصدري - تعديل   فاميلي جونيورهي قناة متخصصة باللغة الإنجليزية الكندية المملوكة من قبل دي اتش اكس مي

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Ini adalah daftar maskapai penerbangan yang saat ini beroperasi. Oseania  Samoa Amerika Inter Island Airways  Australia Qantas Virgin Blue  Kepulauan Cook Air Rarotonga  Fiji Air Katafanga Fiji Airways Pacific Island Air Pacific Su...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) نيكولاس بروكس معلومات شخصية الميلاد 14 يناير 1941  تاريخ الوفاة 2 فبراير 2014 (73 سنة)   مواطنة المملكة المتحدة  عضو في الأكاديمية البريطانية  الحياة العم�...

Equestrian at the2016 Summer OlympicsQualificationDressageindividualteamEventingindividualteamJumpingindividualteamvte Main article: Equestrian at the 2016 Summer Olympics Summary Nation Individual Team Total Dressage Eventing Jumping Dressage Eventing Jumping  Argentina 4 X 4  Australia 4 4 4 X X X 12  Austria 1 1  Belgium 1 2 2 5  Brazil 4 4 4 X X X 12  Canada 2 4 4 X X 10  Chile 1 1  China 1 1  Colombia 2 2  Denmark 4 X 4  Dominican Re...

Ольга Савчук Громадянство  УкраїнаМісце проживання Нассау, БагамиДата народження 20 вересня 1987(1987-09-20) (36 років)Місце народження Макіївка, УкраїнаЗріст 177 смВага 68 кгПочаток кар'єри 2004Робоча рука праваБекхенд дворучнийПризові, USD 1 642 228Одиночний розрядМатчів в/п 346�...

CETC YLC-18 3D Radar – Sri Lanka Air Force The YLC-2 radar (domestic designation: LLQ303, formerly known as 385) is a three-dimensional main guidance and surveillance radar developed by the Nanjing Research Institute of Electronics Technology. In the mid-2000s, an improved version labeled YLC-2A was deployed to the PLA. Equipped with a new Giga-flops digital signal processor, it is capable of Digital Moving Target Indication (DMTI) and Constant false alarm rate (CFAR) processing. An S-band ...

1784 Danish punitive expedition in Gold Coast Sagbadre WarFort Prinzenstein, constructed after the warDateMarch 30 - June 18, 1784LocationDanish Gold CoastResult Allied Victory Anlo loses all territory it had previously acquired from its neighbors Construction of Fort Prinzenstein Exclusive trade between Anlo and Denmark establishedBelligerents Ada-Danish Alliance Danish West India Company Little Popo Ada Accra Akuapem Akwapim Ga Krobo Anlo Confederacy Anlo Keta (initially) Supported by: Grea...

American Rabbi Shraga Feivel MendlowitzBorn1886Világ, Austria-HungaryDied7 September 1948(1948-09-07) (aged 61–62)NationalityAustria-Hungarian , American Shraga Feivel Mendlowitz (1886 – 7 September 1948)[1][2] was a leader of American Orthodox Judaism and founder of institutions including Torah U'Mesorah, an outreach and educational organization. In 1921 he became principal of Yeshiva Torah Vodaas, an early day Brooklyn-based yeshiva initially founded as an elementa...

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. جزء من سلسلة مقالات سياسة الكويتالكويت الدستور الدستور المجلس التأسيسي حقوق الإنسان الإمارة الأسرة الحاكمة الأمير نواف الأحمد الجابر الصباح ولي العهد مشعل الأحمد الجابر ال...

Bảo tàng Bảo hiểm KrakówMuzeum Ubezpieczeń w KrakowieLối vào Bảo tàngThành lập1987Vị tríSố 3 Phố Dunajewskiego, KrakówGiám đốcMarianna HalotaTrang webHomepage at Wayback Bảo tàng Bảo hiểm Kraków (tiếng Ba Lan: Muzeum Ubezpieczeń w Krakowie) là một bảo tàng tồn tại trước đây về bảo hiểm tọa lạc tại số 3 Phố Dunajewskiego ở Kraków, Ba Lan. Lược sử hình thành Bảo tàng Bảo hiểm Kraków được thành lập v...

Italian boxer and professional wrestler (1906–1967) Primo CarneraCarneraBorn(1906-10-26)26 October 1906Sequals, ItalyDied29 June 1967(1967-06-29) (aged 60)Sequals, ItalyNationalityItalianAmericanOther names Da Preem The Ambling Alp The Gentle Giant The Vast Venetian StatisticsWeight(s) Heavyweight Height6 ft 6 in (198 cm)Reach85 in (216 cm)StanceOrthodox Boxing recordTotal fights103;[1] with the inclusion of newspaper decisionsWins89Wins by KO72Los...

Aerial view of Eliza Island with Lummi Island behind Eliza Island is located in the western part of Bellingham Bay in the U.S. state of Washington. It lies just east of the southern part of Lummi Island, in Whatcom County. Eliza Island has a land area of 0.571 km2 (0.220 sq mi; 141 acres). Its population was ten persons as of the 2010 census[update]. The island was named by Charles Wilkes during the Wilkes Expedition of 1838–1842. One of the few names given by Wilkes ...

American academic For other people named Thomas Davenport, see Thomas Davenport (disambiguation). This biography of a living person relies too much on references to primary sources. Please help by adding secondary or tertiary sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately, especially if potentially libelous or harmful.Find sources: Thomas H. Davenport – news · newspapers · books · scholar...

Chairman of the Council of Ministers of Bosnia and Herzegovina from 2000 to 2001 Martin RagužChairman of the Council of Ministers of Bosnia and HerzegovinaIn office18 October 2000 – 22 February 2001PresidentHalid Genjac Ante Jelavić Živko RadišićPreceded bySpasoje TuševljakSucceeded byBožidar Matić Ministerial offices Minister of Human Rights and RefugeesIn office22 June 2000 – 22 February 2001Prime MinisterSpasoje Tuševljak HimselfPreceded byOffice establishedS...

Los símbolos y fórmulas químicas se utilizan en el ámbito de la química para identificar a los elementos y compuestos químicos, sus estados de agregación y la proporción de elementos que forman los diversos compuestos o moléculas. Símbolo químico Artículo principal: Símbolo químico Los símbolos químicos son los signos abreviados que se utilizan para identificar los elementos y compuestos químicos en lugar de sus nombres completos. Algunos elementos frecuentes con sus sí...

Kimberly-Clark Corporation mao ang usa ka American nga mga multinasyunal sa personal nga pag-atiman sa korporasyon nga og sa kasagaran sa papel nga-based nga mga consumer nga produkto. Kimberly-Clark brand sa ngalan nga mga produkto naglakip sa Kleenex sa nawong sa tissue, Kotex feminine hygiene products, Cottonelle, Scott ug Andrex kasilyas nga papel, Wypall utility wipes, KimWipes scientific pagpanglimpyo wipes, ug Huggies disposable diaper. Galeriya sa hulagway

Ель-ЕррумбларEl Herrumblar Герб {{{official_name}}}ГербМуніципалітетКраїна ІспаніяАвтономна спільнотаКастилія-Ла-МанчаПровінціяКуенкаКоординати39°24′00″ пн. ш. 1°37′01″ зх. д. / 39.4° пн. ш. 1.617° зх. д. / 39.4; -1.617Координати: 39°24′00″ пн. ш. 1°37′01″ зх....