تقسم نقطة تقاطع المتوسطات ( النقطة الوسطى ) المتوسط إلى جزئين
النسبة بينهما 2:9 من جهة القاعدة، و 1:3 من جهة الرأس.
أي أن النقطة الوسطى تبعد عن رأس المتوسط مسافة قدرها ثلثي طول المتوسط.
البرهان
في المثلث ABC رسمنا المتوسطات AD,BE,CF والنقطة P هي النقطة الوسطى، النقطتين G,H في منتصفي PC,PB على الترتيب، سنثبت أن النطقة P تقسم المتوسط إلى جزئين النسبة بينهما 1:2 من جهة الرأس.
المطلوب : أو
القطعة المستقيمة EF تصل بين منتصفي ضلعين في المثلث ABC إذا EF توازي الضلع الثالث BC و .
كذلك الحال مع القطعة GH في المثلث PBC إذا GH توازي BC و .
الرباعي FEGH فيه ضلعان EF و GH متوزايان حيث يوازي كل منهما BC، ومتطابقان حيث يساوي كل منهما نصف BC.
إذا الرباعي FEGH متوازي أضلاع، و من خصائص متوازي الأضلاع أن القطرين FG و EH ينصفان بعضها البعض .