توزيع بواسون (بالإنجليزية: Poisson distribution)(/ˈpwɑːsɒn/;
تنطق بالفرنسية: [pwasɔ̃]
)،(ويسمى أيضا قانون بواسون للأعداد الصغيرة[1]) هو توزيع احتمالي منفصل يعبر عن احتمالية حدوث عدد من الأحداث ضمن فترة محددة من الوقت إذا حدثت هذه الأحداث بمعدل وسطي معروف وغير متعلقة بزمن حدوث آخر حدث.
في نظرية الاحتمالات والإحصاءات هو التوزيع الاحتمالي المنفصل الذي سمي على اسم عالم الرياضيات الفرنسي سيميون دينيس بواسون، وهو توزيع احتمالي منفصل يعبر عن احتمال حدوث عدد معين من الأحداث في الفاصل الزمني أو المكان إذا حدثت هذه الأحداث بمعدل متوسط ثابت معروف وبشكل مستقل عن الزمن منذ آخر حدث. يمكن أيضًا استخدام توزيع بواسون لعدد الأحداث في فترات زمنية محددة أخرى مثل المسافة أو المنطقة أو الحجم.
على سبيل المثال، يتلقى مركز الاتصال الهاتفي 180 مكالمة في المتوسط في الساعة، 24 ساعة في اليوم. المكالمات مستقلة. استقبال واحد لا يغير من احتمالية وصول الآخر. عدد المكالمات التي يتم تلقيها خلال أي دقيقة له توزيع احتمالية بواسون: الرقم الأكثر احتمالًا هو 3، ولكن من المحتمل أيضًا أن يكون الرقم 2 أو 4 محتملًا؛ وهناك احتمال ضئيل لكونه منخفضًا حتى الصفر وكذلك احتمال صغير جدًا أن يكون 10 .
مثال آخر هو عدد أحداث الانحلال التي تحدث من مصدر مشع في فترة مراقبة معينة قصيرة.
في مدّة زمنية T، يحصل الحدث بمعدل λ مرّات (λ أقل من 5 مثلا). لنرمز ب X المتغير العشوائي الذي يمثل عدد المرّات التي سيحصل فيها الحدث في X. T يمكن أن يساوي 0، 1، 2...
يتبع هذا المتغير العشوائي القانون التالي:
مهما كان العدد الطبيعي k.
λعدد حقيقي موجب
(p(k : احتمال حصول الحدث k في T.
هذا ما يدعى توزيع بواسون (أو قانون بواسون) ذا المعلمة λ.
تعريفات
دالة الكتلة الاحتمالية
يعتبر توزيع بواسون شائعًا لنمذجة عدد المرات التي يقع فيها الحدث في فترة زمنية أو مساحة .
يُقال إن المتغير العشوائي X المنفصل له توزيع بواسون مع المعامل المتغير λ> 0 إذا كان لـ k = 0، 1، 2... دالة الكتلة الاحتمالية لـ X تعطى بواسطة:[2]
يمكن تطبيق توزيع بواسون على الأنظمة التي بها عدد كبير من الأحداث المحتملة، كل منها نادر الحدوث. عدد مثل هذه الأحداث التي تحدث خلال فترة زمنية محددة، في ظل الظروف المناسبة، هو رقم عشوائي مع توزيع بواسون.
يمكن تكييف المعادلة إذا، بدلاً من متوسط عدد الأحداث ، نحصل على معدل زمني لعدد الأحداث يحدث. ثم (عرض عدد الأحداث لكل وحدة زمنية)، و
مثال
قد يكون توزيع بواسون مفيدًا لنمذجة أحداث مثل
عدد النيازك التي يزيد قطرها عن متر واحد والتي تضرب الأرض في السنة.
عدد المرضى الذين يصلون إلى غرفة الطوارئ بين الساعة 10 و 11 مساءً.
عدد فوتونات الليزر التي تصطدم بالكاشف في فترة زمنية معينة.
الافتراضات والصلاحية
يعتبر توزيع بواسون نموذجًا مناسبًا إذا كانت الافتراضات التالية صحيحة: [4]
k هو عدد المرات التي يقع فيها حدث ما في فترة ما ويمكن لـ k أن تأخذ القيم 0، 1، 2....
لا يؤثر وقوع حدث واحد على احتمال وقوع حدث ثان. أي أن الأحداث تحدث بشكل مستقل.
متوسط المعدل الذي تحدث به الأحداث مستقل عن أي تكرارات. من أجل التبسيط، يُفترض عادةً أن يكون هذا ثابتًا، ولكن قد يختلف عمليًا مع مرور الوقت.
لا يمكن أن يحدث حدثان في نفس اللحظة بالضبط؛ بدلاً من ذلك، في كل فترة فرعية صغيرة جدًا، يحدث حدث واحد بالضبط أو لا يحدث.
إذا كانت هذه الشروط صحيحة، فإن k هو متغير بواسون العشوائي، وتوزيع k هو توزيع بواسون.
توزيع بواسون هو أيضًا حدالتوزيع ذي الحدين، حيث يساوي احتمال النجاح لكل تجربة λ مقسومًا على عدد التجارب، حيث يقترب عدد التجارب من اللانهاية (انظر التوزيعات ذات الصلة).
أمثلة على احتمالية توزيعات بواسون
في نهر معين، تحدث فيضانات الفائض مرة كل 100 عام في المتوسط. احسب احتمالk= 0، 1، 2، 3، 4، 5، أو 6 فيضان فيضان في فترة 100 سنة، على افتراض أن نموذج بواسون مناسب.
لأن متوسط معدل الحدث هو فيضان فائض واحد لكل 100 عام، λ = 1
يعطي الجدول أدناه احتمالية حدوث 0 إلى 6 فيضانات في فترة 100 عام.
k
P(kالفيضانات الفائضة في 100 عام)
0
0.368
1
0.368
2
0.184
3
0.061
4
0.015
5
0.003
6
0.0005
أفاد أوغارتي وزملاؤه أن متوسط عدد الأهداف في إحدى مباريات كأس العالم لكرة القدم يبلغ 2.5 تقريبًا وأن نموذج بواسون مناسب.
[5]
لأن متوسط معدل الحدث 2.5 هدف لكل مباراة، λ = 2.5.
يعطي الجدول أدناه الاحتمال من 0 إلى 7 أهداف في المباراة.
k
P(kأهداف في مباراة كأس العالم لكرة القدم)
0
0.082
1
0.205
2
0.257
3
0.213
4
0.133
5
0.067
6
0.028
7
0.010
مرة واحدة في الأحداث الفاصلة: حالة خاصة من λ = 1 و k = 0
لنفترض أن الفلكيين يقدرون أن النيازك الكبيرة (فوق حجم معين) ضربت الأرض في المتوسط مرة كل 100 سنة (λ = 1 حالة لكل 100 سنة)، وأن عدد الزيارات النيزك يتبع توزيع بواسون. ما هو احتمال k = 0 يضرب نيزك في المائة عام القادمة؟
في ظل هذه الافتراضات، فإن احتمال عدم اصطدام أي نيازك كبيرة بالأرض خلال المائة عام القادمة هو 0.37 تقريبًا. الباقي 1 - 0.37 = 0.63 هو احتمال حدوث 1، 2، 3، أو أكثر من ضربات نيزك كبير في المائة عام القادمة. في المثال أعلاه، حدث فيضان فائض مرة كل 100 عام (λ = 1). كان احتمال عدم حدوث فيضانات فائضة خلال 100 عام تقريبًا 0.37، بنفس الحساب.
بشكل عام، إذا حدث حدث ما في المتوسط مرة واحدة لكل فترة زمنية (λ = 1)، وتتبع الأحداث توزيع بواسون، ثم P (0 أحداث في الفترة التالية) & nbsp ؛ = 0.37. بالإضافة إلى ذلك، P (حدث واحد بالضبط في الفترة التالية) = 0.37، كما هو موضح في الجدول لفيضانات الفائض.
أمثلة تنتهك افتراضات بواسون
من المحتمل ألا يتبع عدد الطلاب الذين يصلون إلى اتحاد الطلاب في الدقيقة توزيع بواسون، لأن المعدل ليس ثابتًا (معدل منخفض أثناء وقت الفصل، ومعدل مرتفع بين أوقات الفصل) وقادمات الطلاب الفرديين ليسوا مستقلين (الطلاب تميل إلى المجيء في مجموعات).
قد لا يتبع عدد الزلازل التي تبلغ قوتها 5 درجات سنويًا في بلد ما توزيع بواسون إذا زاد زلزال واحد كبير من احتمال حدوث توابع من نفس الحجم.
الأمثلة التي يتم فيها ضمان حدث واحد على الأقل لا يتم توزيع بواسون؛ ولكن يمكن نمذجتها باستخدام توزيع بواسون بدون اقتطاع.
يمكن نمذجة توزيعات العد التي يكون فيها عدد الفترات ذات الأحداث الصفرية أعلى من المتوقع بواسطة نموذج بواسون باستخدام نموذج مضخم صفري.
وضع المتغير العشوائي الموزع بواسون مع عدد غير صحيح يساوي ، وهو أكبر عدد صحيح أصغر من أو يساوي λ . هذا هو مكتوب أيضا الكلمة (λ). عندما λ هو عدد صحيح موجب، وسائط هي λλ و - 1.
جميع تراكمات توزيع بواسون تساوي القيمة المتوقعة λ . العزم المضروبn لتوزيع بواسون هو λn .
تتحلل أحيانًا القيمة المتوقعةلعملية بواسون إلى نتاج الكثافةوالتعرض (أو يتم التعبير عنها عمومًا على أنها جزء لا يتجزأ من «وظيفة الكثافة» عبر الزمان أو المكان، والتي توصف أحيانًا باسم «التعرض»). [7]
لو بالنسبة مستقلة، إذن . [12] العكس هو نظرية رايكوف، التي تقول أنه إذا كان مجموع متغيرين عشوائيين مستقلين موزعًا بواسون، فسيكون كذلك كل من هذين المتغيرين العشوائيين المستقلين. [13][14]
يترك و تكون متغيرات عشوائية مستقلة، مع ، ثم لدينا ذلك
تم إثبات الحد الأعلى باستخدام حد تشيرنوف القياسي.
يمكن إثبات الحد الأدنى بملاحظة ذلك هو احتمال أن ، أين ، والتي يحدها أدناه ، أين هو إنتروبيا نسبية (انظر المدخل على حدود ذيول التوزيعات ذات الحدين لمزيد من التفاصيل). كذلك مشيرا إلى أن ، وحساب الحد الأدنى على الاحتمال غير المشروط يعطي النتيجة. يمكن العثور على مزيد من التفاصيل في ملحق كاماث وآخرون. [18]
بشكل عام، إذا كانت X1، X2. . . Xn هي متغيرات بواسون العشوائية المستقلة مع المعلمات λ1، λ2... λn ثم
معطى . في الحقيقة،
لو وتوزيع ، شرطي على X = ك، هو توزيع ذي الحدين، ، ثم يتبع توزيع Y توزيع بواسون . في الواقع، إذا ، الشرطي على X = k، يتبع توزيعًا متعدد الحدود، ، ثم كل منهما يتبع توزيع بواسون المستقل .
يمكن اشتقاق توزيع بواسون كحالة مقيدة للتوزيع ذي الحدين حيث أن عدد المحاكمات يذهب إلى اللانهاية والعدد المتوقع للنجاحات يظل ثابتًا - انظر قانون الأحداث النادرة أدناه. لذلك، يمكن استخدامه كتقريب للتوزيع ذي الحدين إذا كان n كبيرًا بدرجة كافية وكان p صغيرًا بدرجة كافية. هناك قاعدة عامة تنص على أن توزيع بواسون هو تقريب جيد للتوزيع ذي الحدين إذا كان n على الأقل 20 و p أصغر من أو يساوي 0.05، وتقريب ممتاز إذا كان n ≥ 100 و np ≤ 10- [19]
توزيع بواسون هو حالة خاصة لتوزيع بواسون المركب المنفصل (أو توزيع بواسون المتلعثم) بمعامل فقط. [20][21] يمكن استنتاج توزيع بواسون المركب المنفصل من التوزيع المحدود للتوزيع أحادي المتغير متعدد الحدود. وهي أيضًا حالة خاصةلتوزيع بواسون المركب.
للحصول على قيم كبيرة بما فيه الكفاية لـ λ، (مثل λ> 1000)، التوزيع الطبيعي بمتوسط λ والتباين λ (الانحراف المعياري ) هو تقريب ممتاز لتوزيع بواسون. إذا كانت أكبر من حوالي 10، فإن التوزيع الطبيعي هو تقريب جيد إذا تم إجراء تصحيح استمراري مناسب، أي إذا كان P (X ≤ x)، حيث x هو عدد صحيح غير سالب، يتم استبداله بـ P (X ≤ x + 0.5).
في ظل هذا التحول، التقارب إلى الحالة الطبيعية (مثل الزيادات) أسرع بكثير من المتغير غير المحول. تحويلات أخرى، أكثر تعقيدًا قليلاً، لتثبيت التباين متاحة، [6] أحدها هو تحويل أنسكومب. [23] انظر تحويل البيانات (الإحصائيات) لمزيد من الاستخدامات العامة للتحولات.
إذا كان لكل ر > 0 عدد الوافدين في الفترة الزمنية [0، t ] يتبع توزيع بواسون بمتوسط λt، ثم يكون تسلسل أوقات الوصول بين المتغيرات المستقلة والأسية الموزعة بشكل متماثل لها متوسط 1 / λ . [24]
وبعبارة أخرى، دعونا تكون متغيرات عشوائية بحيث له قيمة مع الاحتمال والقيمة 0 مع الاحتمال المتبقي. افترض أيضا أن الأسرة مستقلة بحرية. ثم الحد كما من قانون يتم تقديمها بموجب قانون بواسون الحر مع المعلمات .
هذا التعريف مشابه لإحدى الطرق التي يتم بها الحصول على توزيع بواسون الكلاسيكي من عملية بواسون (كلاسيكية).
يتم إعطاء التدبير المرتبط بقانون بواسون المجاني بواسطة [28]
نعطي قيمًا لبعض التحولات المهمة لقانون بواسون الحر؛ يمكن العثور على الحساب في، على سبيل المثال، في كتاب «محاضرتان حول توافقيات الاحتمالية الحرة بواسطة أ. نيكا ور. سبايشر».[29]
إعطاء عينة من القيم المقاسة n، لأني = 1، ... ن، نرغب في تقدير قيمة المعلمة λ لمجتمع بواسون الذي تم سحب العينة منه. تقدير الاحتمالية القصوى هو [30]
نظرًا لأن كل ملاحظة لها توقع λ فهل تعني العينة. لذلك، فإن تقدير الاحتمالية القصوى هو مقدر غير متحيز لـ λ. وهو أيضًا مقدر فعال نظرًا لأن تباينه يحقق الحد الأدنى كرامر - راو (CRLB). ومن ثم فإن التباين الأدنى غير متحيز. كما يمكن إثبات أن المجموع (ومن ثم متوسط العينة لأنه دالة فردية للمبلغ) هو إحصائية كاملة وكافية لـ λ.
لإثبات الكفاية، قد نستخدم نظرية العوامل. ضع في اعتبارك تقسيم دالة الكتلة الاحتمالية لتوزيع بواسون المشترك للعينة إلى جزأين: جزء يعتمد فقط على العينة (مسمى ) وواحد يعتمد على المعلمة والعينة فقط من خلال الوظيفة . ثم إحصائية كافية لـ .
الفصل الأول، ، يعتمد فقط على . الفصل الثاني، ، يعتمد على العينة فقط من خلال . هكذا، كافي.
للعثور على المعلمة λ التي تزيد من دالة الاحتمال لسكان بواسون، يمكننا استخدام لوغاريتم دالة الاحتمال:
نأخذ مشتق من فيما يتعلق λ وذلك لمقارنة الصفر:
الحل من أجل λ يعطي نقطة ثابتة.
إذن λ هو متوسط قيم ki . الحصول على علامة المشتق الثاني لـ L عند النقطة الثابتة سيحدد نوع القيمة القصوى λ .
يعطي تقييم المشتق الثاني عند النقطة الثابتة :
وهو سالب n في مقلوب متوسط k i . هذا التعبير سالب عندما يكون المتوسط موجبًا. إذا تم استيفاء ذلك، فإن النقطة الثابتة تزيد من دالة الاحتمال.
من أجل الاكتمال، يُقال أن عائلة التوزيعات كاملة إذا وفقط إذا يعني ذلك للجميع . إذا كان الفرد هي iid ، من ثم . من خلال معرفة التوزيع الذي نريد التحقيق فيه، من السهل أن نرى اكتمال الإحصاء.
من أجل هذه المساواة، يجب أن يكون 0. هذا يأتي من حقيقة أنه لن يكون أي من المصطلحات الأخرى صفرًا للجميع في المجموع ولجميع القيم الممكنة لـ . لذلك، للجميع يعني ذلك ، وقد ثبت أن الإحصاء مكتمل.
فاصل الثقة
يمكن التعبير عن فاصل الثقة لمتوسط توزيع بواسون باستخدام العلاقة بين وظائف التوزيع التراكمي لتوزيعات بواسون وكي تربيع. يرتبط توزيع مربع كاي ارتباطًا وثيقًا بتوزيع جاما، وهذا يؤدي إلى تعبير بديل. بالنظر إلى الملاحظة k من توزيع بواسون بمتوسط μ، فإن فاصل الثقة لـ μ بمستوى الثقة 1 – α هو
أو مكافئ،
أين هي الدالة الكمية (المقابلة لمنطقة الذيل السفلية p) لتوزيع مربع كاي مع n من درجات الحرية و هي دالة كميّة لتوزيع جاما بمعامل الشكل n ومعلمة المقياس 1. [6][31] هذا الفاصل الزمني «دقيق» بمعنى أن احتمالية تغطيتها لا تقل أبدًا عن 1 – α الاسمي.
عندما لا تتوفر كميات توزيع جاما، تم اقتراح تقريب دقيق لهذه الفترة الزمنية الدقيقة (بناءً على تحويل ويلسون-هيلفيرتي): [32]
افترض هي مجموعة من المتغيرات العشوائية المستقلة من مجموعة من توزيعات بواسون، ولكل منها معلمة و ، ونود تقدير هذه المعلمات. بعد ذلك، أظهر Clevenson و Zidek أنه في ظل خسارة الخطأ التربيعية الطبيعية ، متي ، إذن، على غرار مثال شتاين للوسائل العادية، مقدر MLE غير مقبول.[35]
مثال على النشاط الإشعاعي: عدد حالات التحلل في فترة زمنية معينة في عينة مشعة.
مثال البصريات: عدد الفوتونات المنبعثة في نبضة ليزر واحدة. هذه ثغرة أمنية كبيرة لمعظم بروتوكولات توزيع المفاتيح الكمية المعروفة باسم تقسيم رقم الفوتون (PNS).
ينشأ توزيع بواسون فيما يتعلق بعمليات بواسون. ينطبق على ظواهر مختلفة من الخصائص المنفصلة (أي تلك التي قد تحدث 0، 1، 2، 3... مرات خلال فترة زمنية معينة أو في منطقة معينة) كلما كان احتمال حدوث الظاهرة ثابتًا في الزمان أو المكان. تتضمن أمثلة الأحداث التي يمكن نمذجتها كتوزيع بواسون ما يلي:
عدد الجنود الذين قتلوا بركلات الخيول كل عام في كل سلاح في سلاح الفرسان البروسي. تم استخدام هذا المثال في كتاب من تأليف لاديسلاوس بورتكيفيتش (1868–1931). [40]
يرتبط معدل الحدث باحتمالية وقوع حدث في فترة فرعية صغيرة (من الوقت أو المكان أو غير ذلك). في حالة توزيع بواسون، يفترض المرء أن هناك فترة فرعية صغيرة بما فيه الكفاية بحيث يكون احتمال وقوع حدث مرتين «ضئيلاً». مع هذا الافتراض، يمكن للمرء اشتقاق توزيع بواسون من التوزيع ذي الحدين، مع الأخذ في الاعتبار فقط معلومات العدد المتوقع من الأحداث الإجمالية في الفترة الزمنية بأكملها. دع هذا العدد الإجمالي يكون . قسّم الفترة الزمنية بأكملها إلى فترات فرعية من نفس الحجم، مثل هذا > (نظرًا لأننا مهتمون فقط بأجزاء صغيرة جدًا من الفاصل الزمني، فإن هذا الافتراض مفيد). هذا يعني أن العدد المتوقع للأحداث في فترة لكل يساوي . نفترض الآن أن حدوث حدث في الفترة الزمنية بأكملها يمكن اعتباره تجربة برنولي، حيث محاكمة تقابل النظر فيما إذا كان حدث ما يحدث في الفترات الفرعية مع الاحتمال . العدد المتوقع لإجمالي الأحداث في ستكون مثل هذه المحاكمات ، العدد المتوقع لإجمالي الأحداث في الفترة الزمنية بأكملها. ومن ثم، بالنسبة لكل قسم فرعي من الفترة الزمنية، فقد اقتربنا من حدوث الحدث كعملية برنولي للنموذج . كما لاحظنا من قبل، نريد أن ننظر فقط في فترات فرعية صغيرة جدًا. لذلك، نأخذ النهاية على أنها يذهب إلى ما لا نهاية. في هذه الحالة، يتقارب التوزيع ذي الحدين مع ما يُعرف باسم توزيع بواسون بواسطة نظرية حدود بواسون.
في العديد من الأمثلة المذكورة أعلاه - مثل عدد الطفرات في تسلسل معين من الحمض النووي - الأحداث التي يتم عدها هي في الواقع نتائج تجارب منفصلة، وستكون أكثر دقة في نمذجة باستخدام التوزيع ذي الحدين، أي
في مثل هذه الحالات، يكون n كبيرًا جدًا و p صغيرًا جدًا (وبالتالي فإن التوقع np متوسط الحجم). ثم يمكن تقريب التوزيع عن طريق توزيع بواسون الأقل تعقيدًا
هذا التقريب والتي تعرف أحيانا باسم قانون الأحداث النادرة،[49] لأن كل من ن الفردية الأحداث برنولي نادرا ما يحدث. قد يكون الاسم مضللًا لأن العدد الإجمالي لأحداث النجاح في عملية بواسون لا يلزم أن يكون نادرًا إذا لم تكن المعلمة np صغيرة. على سبيل المثال، عدد المكالمات الهاتفية إلى لوحة مفاتيح مزدحمة في ساعة واحدة يتبع توزيع بواسون مع ظهور الأحداث بشكل متكرر للمشغل، لكنها نادرة من وجهة نظر الفرد العادي من السكان الذين من غير المرجح أن يقوموا بذلك. مكالمة إلى لوحة التبديل تلك في تلك الساعة.
تُستخدم كلمة قانون أحيانًا كمرادف لتوزيع الاحتمالات، والتقارب في القانون يعني التقارب في التوزيع . وفقًا لذلك، يُطلق على توزيع بواسون أحيانًا «قانون الأعداد الصغيرة» لأنه التوزيع الاحتمالي لعدد تكرارات حدث نادر الحدوث ولكن توجد فرص كثيرة جدًا لحدوثه. قانون أرقام صغير هو كتاب لادسلاو بورتكيفيز حول توزيع بواسون، التي نشرت في عام 1898. [40][50]
علاقته بتوزيع الاحتمالات الطبيعي
توزيع بواسون يبدي منحنى غير متماثل لقيم صغيرة لـ . وعندما تكون عددا كبيرا فإن منحنى بواسون سيؤول إلى توزيع احتمالي طبيعي mit und :
عملية نقطة بواسون
ينشأ توزيع بواسون بعدد نقاط عملية نقطة بواسون الموجودة في منطقة محدودة. وبشكل أكثر تحديدًا، إذا كانت D عبارة عن مساحة منطقة ما، على سبيل المثال، الفضاء الإقليدي Rd، الذي | D |، المساحة، الحجم، أو بشكل عام، مقياس ليبيسج للمنطقة محدود، وإذا كان N(D) يشير إلى عدد النقاط في D، إذن
انحدار بواسون والانحدار السلبي ذي الحدين
يعد انحدار بواسون والانحدار السالب ذي الحدين مفيدًا للتحليلات حيث يكون المتغير التابع (الاستجابة) هو العدد (0، 1، 2، ...) لعدد الأحداث أو التكرارات في فترة.
تطبيقات أخرى في العلوم
في عملية بواسون، يتقلب عدد الأحداث المرصودة حول متوسطها λ مع الانحراف المعياري . يشار إلى هذه التقلبات على أنها ضوضاء بواسون أو (خاصة في الإلكترونيات) كضوضاء لقطة.
يعتبر ارتباط المتوسط والانحراف المعياري في حساب الأحداث المنفصلة المستقلة مفيدًا علميًا. من خلال مراقبة كيفية اختلاف التقلبات مع الإشارة المتوسطة، يمكن للمرء تقدير مساهمة حدوث واحد، حتى لو كانت هذه المساهمة صغيرة جدًا بحيث لا يمكن اكتشافها مباشرة . على سبيل المثال، يمكن تقدير الشحنة الإلكترونية على الإلكترون من خلال ربط حجم التيار الكهربائيبضوضاء اللقطة. إذا مرت إلكترونات N نقطة في وقت معين t في المتوسط، يكون متوسطالتيار ؛ لأن التقلبات الحالية يجب أن تكون بالترتيب (أي الانحراف المعياري لعملية بواسون)، الشحنة يمكن تقديرها من النسبة .
المثال اليومي هو التحبب الذي يظهر عند تكبير الصور ؛ يعود سبب التحبب إلى تقلبات بواسون في عدد حبيبات الفضة المنخفضة، وليس إلى الحبوب الفردية نفسها. من خلال ربط التحبب بدرجة التوسيع، يمكن للمرء تقدير مساهمة حبة فردية (والتي تكون صغيرة جدًا بحيث لا يمكن رؤيتها بدون مساعدة). تم تطوير العديد من التطبيقات الجزيئية الأخرى لضوضاء بواسون، على سبيل المثال، تقدير كثافة عدد جزيئات المستقبل في غشاء الخلية.
في نظرية المجموعة السببية، تتبع العناصر المنفصلة للزمكان توزيع بواسون في الحجم.
الأساليب الحسابية
يطرح توزيع بواسون مهمتين مختلفتين لمكتبات البرامج المخصصة: تقييم التوزيع ، ورسم أرقام عشوائية حسب هذا التوزيع.
تقييم توزيع بواسون
الحوسبة على سبيل المعطى و هي مهمة تافهة يمكن إنجازها باستخدام التعريف القياسي لـ من حيث الدوال الأسية والقوة والعاملة. ومع ذلك، فإن التعريف التقليدي لتوزيع بواسون يحتوي على مصطلحين يمكن أن يفيضان بسهولة على أجهزة الكمبيوتر: λ k و k ! . الجزء من λ k إلى k ! يمكن أن ينتج عنه خطأ تقريب كبير جدًا مقارنة بـ e−λ، وبالتالي يعطي نتيجة خاطئة. من أجل الاستقرار العددي، يجب تقييم دالة كتلة احتمالية بواسون على أنها
وهو مكافئ رياضيًا ولكنه مستقر عدديًا. يمكن الحصول على اللوغاريتم الطبيعي لوظيفة جاما باستخدام وظيفة lgamma في مكتبة C القياسية (إصدار C99) أو R، أو دالة gammaln في ماتلاب أو سي باي، أو دالة log_gamma في فورتران 2008 وما بعده.
توفر بعض لغات الحوسبة وظائف مدمجة لتقييم توزيع بواسون، وهي
التعقيد خطي في القيمة المرجعة k، والتي تكون في المتوسط. هناك العديد من الخوارزميات الأخرى لتحسين هذا. يتم إعطاء بعضها في آرينز & ديتر، انظر § مراجع أدناه.
بالنسبة للقيم الكبيرة لـ λ، قد تكون قيمة L = e−λ صغيرة جدًا بحيث يصعب تمثيلها. يمكن حل هذا عن طريق تغيير الخوارزمية التي تستخدم معلمة إضافية STEP بحيث لا تتدفقe−STEP :
يعتمد اختيار STEP على عتبة الفائض. بالنسبة لصيغة النقطة العائمة ذات الدقة المزدوجة، تكون العتبة قريبة من 700e، لذا يجب أن تكون 500 خطوة آمنة.
تشمل الحلول الأخرى للقيم الكبيرة لـ أخذ عينات رفض واستخدام تقريب غاوسي.
معكوس تحويل أخذ العينات هي بسيطة وفعالة للقيم صغيرة من λ، وتتطلب رقم عشوائي موحد واحد فقط لكل عينة U. يتم فحص الاحتمالات التراكمية بدورها حتى يتجاوز المرء U.[54]
سيميون بواسون (1781-1840) ونشر مع نظريته الاحتمالية في عمله البحث في احتمالية الأحكام في المسائل الجنائية والمدنية (1837). [55] عمل نظري حول عدد القناعات الخاطئة في بلد معين من خلال التركيز على متغيرات عشوائية معينة N التي تحسب، من بين أمور أخرى، عدد الأحداث المنفصلة (تسمى أحيانًا «الأحداث» أو «الوافدون») التي تحدث خلال فترة زمنية بطول معين. تم إعطاء النتيجة بالفعل في 1711 من قبل أبراهام ديموفر ف يقياس الشرط سواء كان احتمال النجاح في بعض الألعاب معلقًا بشكل عرضي. [56][57][58][6] هذا يجعله مثالًا على قانون ستيجلر وقد دفع بعض المؤلفين إلى القول بأن توزيع بواسون يجب أن يحمل اسم دي مويفر. [59][60]
في عام 1860، قام سيمون نيوكومب بتكييف توزيع بواسون مع عدد النجوم الموجودة في وحدة الفضاء. [61] تم تطبيق عملي آخر لهذا التوزيع بواسطة لاديسلاوس بورتكيفيتش في عام 1898 عندما تم تكليفه بمهمة التحقيق في عدد الجنود في الجيش البروسي الذين قتلوا عرضًا بركلات الحصان. [40] أدخلت هذه التجربة توزيع بواسون في مجال هندسة الموثوقية.
تلخيص التوزيع
المتغير العشوائي X يتبع توزيع بوسون بمعلمه λ إذا كانت دالته الاحتمالية هي:
حيث أن هي معلمة التوزيع الوحيدة بمقدار ثابت، ونعرف المتغير العشوائي
إذن تبين لنا أن (f(x دالة متزايدة إذا كانت وأنها متناقصة إذا كانت أما إذا كانت فذلك يعني وعلى ذلك إذا كانت عدد صحيح فيكون هناك منوالان عند أما إذا كانت عدد غير صحيح فيكون المنوال هو العدد الصحيح الذي يأتي فورا بعد .
دالة التوزيع التراكمية
متوسط التوزيع
وحيث أن
إذن
تباين التوزيع
لكي نحصل على تباين بوسون نوجد أولا القيمة المتوقعة
أي أن
إذن
ونستنتج من ذلك أن: التباين = المتوسط =
دالة توزيع العزوم
حيث أن
مثال:
إذا كان متوسط عدد الحوادث الأسبوعية على إحدى الطرق في مدينة ما هو 3 حوادث. فما احتمال أن يقع في أحد الأسابيع حادثتين ؟
الحل:
متوسط عدد الحوادث
نفرض أن X عدد الحوادث الأسبوعية إذن
حساب (p(k
يقام حساب هذه الكمية نتيجة عن العمل بتوزيع ثنائي ذا المعلمتين (T ; λ/T). إذا اعتبرنا T كبيرا، فيمكن تبيين أن التوزيع الثنائي نهايته في اللانهاية هو توزيع بواسون.
غالبا ما استعمل توزيع بواسون لحساب أحداث النادرة كانتحار الأطفال، وصول البواخر إلى المرسى أو الحوادث الناتجة عن ركالات الأحصنة في العساكر (دراسة لاديسلاوس بورتكيفيكز)
أما منذ بعض عشرات السنين، امتد استعمال توزيع بواسون إلى ميادين أخرى. فهو يستعمل كثيرا الآن في تكنولوجيات الإتصال (حساب عدد المواصلات في مدّة معينة)، مراقبة الجودة الإحصائية، وصف بعض الظواهر التابعة لميدان التفكيك النووي المشع (تفكيك النواة المشعة يتبع دالة أسية ذات معملة تدعى أيضا λ) وعلم الأحياءوالرصد الجوي...
الرسوم البيانة ذات الأعمدة
ككل توزيع قائم على احتمال منفصل، يمكن تمثيل توزيع بواسون برسوم بيانية ذات أعمدة.
هنا تحت، تمثل الرسوم البيانية توزيع بواسون ذا المعلمات 1 و2 و5.
رسم توزيع بواسون ذا العامل 5 بدأ يشبه بعض الشيء التوزيع الطبيعي (أو التوزيع الغاوسي) ذا القيمة المتوقعة 5 التباين 5. ولذلك إذا كانت λ أكبر من 5، نخير استعمال نموذج التوزيع الطبيعي.
بعض الخاصيات
إذا كانتا X وY متغيران عشوائيان مستقلاّن يتبعان توزيع بواسون، الأولى مع المعلمة λ والثانية المعلمة μ فإنّ X+Y متغير عشوائي يتبع توزيع بواسون ذا المعلمة λ+μ.
Iksaka BanuLahir(1964-10-07)7 Oktober 1964Yogyakarta, IndonesiaPekerjaanSastrawan, komikus, praktisi periklananTahun aktif1989 - sekarang Iksaka Banu (lahir 7 Oktober 1964) adalah seniman berkebangsaan Indonesia. Namanya dikenal melalui karya-karyanya berupa komik dan prosa yang dipublikasikan ke berbagai media massa. Iksaka Banu merupakan salah satu penerima Penghargaan Kusala Sastra Khatulistiwa melalui karyanya, Semua Untuk Hindia, pada tahun 2014, dan Penghargaan Pena Kencana (2008 ...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Gitaan Klasifikasi ilmiah Kerajaan: Plantae Upakerajaan: Trachaeophyta Divisi: Magnoliophyta Kelas: Magnoliopsida Ordo: Gentianales Famili: Apocynaceae Subfamili: Rauvolfioideae Tribus: Willughbeieae Genus: Willughbeia Spesies: W. coriacea Nama bi...
Radio station in Marion, TexasKBIBMarion, TexasBroadcast areaSan AntonioFrequency1000 kHzProgrammingLanguage(s)SpanishFormatSpanish ReligiousOwnershipOwnerHispanic Community CollegeTechnical informationFacility ID27303ClassDPower250 watts dayTransmitter coordinates29°34′9″N 98°9′47″W / 29.56917°N 98.16306°W / 29.56917; -98.16306LinksWebsitekbibradio.org KBIB (1000 AM) is a radio station broadcasting a Spanish Religious format. Licensed to Marion, Texas, Uni...
Harilal GandhiHarilal Gandhi, digambarkan kadang antara tahun 1915 dan 1932.Lahir1888Meninggal18 Juni 1948 (umur 60)Bombay, Uni IndiaSuami/istriGulab GandhiAnaklima anakOrang tuaAyah: Mohandas Karamchand GandhiIbu: Kasturba Gandhi Harilal Mohandas Gandhi (Devanagari: हरीलाल गांधी), (1888 – 18 Juni 1948) adalah anak pertama dari Mahatma Gandhi. Dia beralih ke agama Islam tetapi kemudian dikembalikan kembali ke agama Hindu. Harilal meninggal dengan penyakit hati pa...
Hungarian footballer and manager The native form of this personal name is Egervári Sándor. This article uses Western name order when mentioning individuals. This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Sándor Egervári...
JPEG XL Estensione.jxl Magic numberFF 0A00 00 00 0C 4A 58 4C 20 0D 0A 87 0A Tipo MIMEimage/jxl SviluppatoreJoint Photographic Experts Group, Google, Cloudinary LicenzaRoyalty-free TipoCompressione dell'immagine CompressioneSia lossy che lossless Estensione diPIK, FLIF, FUIF StandardISO/IEC 18181 Formato aperto?Sì Sito webjpeg.org/jpegxl/ Modifica dati su Wikidata · Manuale JPEG XL è un formato per immagini di tipo raster. Supporta sia una compressione con perdita di dati che una compr...
13th-century crusade against Catharism in southern France Albigensian CrusadePart of the CrusadesMassacre against the Albigensians by the CrusadersDateJuly 1209 – 12 April 1229 (19 Years)LocationLanguedoc, FranceResult Crusader victoryBelligerents Crusade: Crusader volunteers Episcopal Inquisition Dominican Order Kingdom of France Cathars County of Toulouse Viscounty of Béziers and Albi Crown of Aragon County of Foix Viscounty of Carcassonne Kingdom of EnglandComma...
Lukaku celebrating his first goal against Tunisia at the 2018 FIFA World Cup Romelu Lukaku is a Belgian professional footballer who represents the Belgium national football team as a striker. Aged 17, he made his debut for his country in a 1–0 defeat to Croatia in Brussels in March 2010. His first and second international goals came on his eighth appearance for Belgium, in a 2–0 friendly victory over Russia. As of 26 March 2024[update], Lukaku is his country's top score...
List of events ← 1863 1862 1861 1864 in Japan → 1865 1866 1867 Decades: 1840s 1850s 1860s 1870s 1880s See also:Other events of 1864History of Japan • Timeline • Years Events from the year 1864 in Japan. Incumbents Emperor: Kōmei Events August 20 - Kinmon incident Births October 8 – Kikunae Ikeda, chemist (d. 1936)[1] Deaths vteYears in Japan (538–present)Asuka period (538–710) 646 660 684 703 Nara period (710–794) 721 729 737 ...
لمعانٍ أخرى، طالع علي بن أبي طالب (توضيح). هذه المقالة عن علي بن أبي طالب رابع الخُلفاء الراشدين وأوَّل أئمة الشيعة. لمعانٍ أخرى، طالع علي (توضيح). هذه المقالة عن حيدرة. لمعانٍ أخرى، طالع حيدرة (توضيح). علي بن أبي طالب تخطيط لاسم علي بن أبي طالب بخط الثلث ملح...
UK ceremonial units Not to be confused with King's Guard. Yeomen of the Guard Royal Company of Archers Sovereign's Bodyguard is the name given to three ceremonial units in the United Kingdom who are tasked with guarding the Sovereign. These units are: His Majesty's Body Guard of the Honourable Corps of Gentlemen at Arms – formed 1509 King's Body Guard of the Yeomen of the Guard – formed 1485 Royal Company of Archers, the King's Body Guard for Scotland –...
2020 agreement between Israel and Morocco Israel–Morocco normalization agreement22 December 2020 Joint Declaration among the Kingdom of Morocco, State of Israel, and United States of AmericaTypeNormalization agreementSignedDecember 22, 2020LocationRabat, MoroccoMediators United StatesParties Israel Morocco The Israel–Morocco normalization agreement is an agreement announced by the United States government on December 10, 2020, in which Israel and Morocco agreed to begin n...
American rapper (born 1962) This article is about the American rapper and former baseball executive. For the Rick Ross song, see Teflon Don (album). Stanley Burrell redirects here. For the basketball player, see Stanley Burrell (basketball). MC HammerHammer in 2010Background informationBirth nameStanley Kirk BurrellAlso known as Hammerman Hammertime Hammer King Hammer Kirk Burrell K.B. Holy Ghost Boy Born (1962-03-30) March 30, 1962 (age 62)Oakland, California, U.S.Genres Hip hop pop rap...
American magazine in PennsylvaniaThis article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Philadelphia magazine – news · newspapers · books · scholar · JSTOR (October 2023) (Learn how and when to remove this message) PhiladelphiaCover of the March 2013 issueEditorBrian HowardFrequencyMonthlyFounded1908; ...
Species of mammals belonging to the peccary family of even-toed ungulates White-lipped peccaryTemporal range: Pliocene–present PreꞒ Ꞓ O S D C P T J K Pg N Conservation status Vulnerable (IUCN 3.1)[1] CITES Appendix II (CITES)[2] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Artiodactyla Family: Tayassuidae Genus: TayassuFischer von Waldheim, 1814 Species: T. pecari Binomial name Tayassu pecari(Link, ...
Goskino (bahasa Rusia: Госкино СССР, Goskino SSSR) merupakan akronim dari Komite Negara untuk Sinematografi (bahasa Rusia: Государственный комитет по кинематографии СССР, Gosudarstvennyiy Komitet po Kinematografii SSSR) di Uni Soviet. Dahulu, lembaga ini merupakan lembaga negara yang menjadi pusat sinematografi Uni Soviet. Presiden Goskino Alexei Romanov (1963-1972) Filipp Ermash (1972-1986) Artikel bertopik Uni Soviet ini adalah se...
O'Sullivan Beach-LonsdaleNamesFull nameO'Sullivan Beach-Lonsdale Football ClubClub detailsFounded2001; 23 years ago (2001)CompetitionAdelaide Footy LeagueGround(s)Morphett Vale Primary School Oval, Morphett ValeUniforms Home The O'Sullivan Beach-Lonsdale Football Club, also known as the Lonsdale Lions, is an Australian rules football club that plays in the Adelaide Footy League. Overview The club was formed as a merger of the Lonsdale Football Club and the O’Sullivan Beac...
Office in Christian churches This article is about the office in Christian churches. For other uses, see Deacon (disambiguation). Saint Stephen, one of the first seven deacons in the Christian Church, holding a Gospel Book in a 1601 painting by Giacomo Cavedone. A deacon is a member of the diaconate, an office in Christian churches that is generally associated with service of some kind, but which varies among theological and denominational traditions. Major Christian churches, such as the Cat...