"E (bilangan)" beralih ke halaman ini. Untuk kode yang mewakili bahan tambahan makanan, lihat Bilangan E.
Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari E (mathematical constant) di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan.
(Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjemahan artikel)
Bilangan (atau, disebut juga sebagai bilangan Euler) adalah konstanta matematika yang di mana aproksimasi nilainya sama dengan 2,71828 dan dikarakterisasi dalam berbagai cara. Bilangan ini termasuk basis dari logaritma alami.[1][2] Bilangan ini adalah limit dari dengan yang mendekati nilai tak hingga, ekspresi yang muncul dalam studi bunga majemuk. Bilangan ini dihitung sebagai jumlah dari deret tak hingga berikut:[3][4]
Bilangan ini juga merupakan bilangan positif unik sehingga grafik fungsi memiliki kemiringan dari 1 pada .[5]
Fungsi eksponensial alami adalah fungsi unik sama dengan turunan-diri dan memenuhi persamaan ; artinya juga dapat didefinisikan sebagai . Logaritma alami atau logaritma dengan basis , adalah fungsi invers pada fungsi eksponensial alami. Logaritma alami suatu bilangan didefinisikan secara langsung sebagai luas bawah kurva antara dan , dalam hal ini adalah nilai yang luasnya sama dengan satu (lihat gambar diatas).
kadang-kadang disebut bilangan Euler, sesuai dengan metematikawan asal Swiss Leonhard Euler (jangan keliru dengan , konstanta Euler–Mascheroni, terkadang disebut juga sebagai konstanta Euler), atau konstanta Napier.[4] Namun, pilihan Euler atas simbol dikatakan sudah dipertahankan untuk menghormatinya.[6] Konstanta ini ditemukan oleh matematikawan Swiss Jacob Bernoulli saat mempelajari bunga majemuk.[7][8]
Bilangan sangat penting digunakan dalam bidang matematika,[9] disamping 0, 1, , dan . Kelimanya muncul dalam satu formulasi identitas Euler, dan memainkan peran penting dan berulang di seluruh bidang matematika.[10][11] Seperti konstanta , adalah irasional (yaitu, tidak dapat direpresentasikan sebagai rasio bilangan bulat) dan transendental (yaitu bukan akar dari polinomial bukan nol dengan koefisien rasional).[4] Untuk 50 tempat desimal nilai adalah:
2.71828182845904523536028747135266249775724709369995... (barisan A001113 pada OEIS).
Sejarah
Referensi pertama untuk konstanta diterbitkan pada tahun 1618 dalam tabel lampiran dari karya tentang logaritma oleh John Napier.[8] Namun, tabel tersebut tidak berisi konstanta itu sendiri, tetapi hanya daftar logaritma yang dihitung dari konstanta . Diasumsikan bahwa tabel tersebut ditulis oleh William Oughtred.
Penemuan konstanta itu sendiri dikreditkan ke Jacob Bernoulli pada tahun 1683,[12][13] yang mencoba mencari nilai dari ekspresi berikut (yang sama dengan ):
Penggunaan konstanta yang diketahui pertama kali, diawali oleh huruf adalah dalam korespondensi dari Gottfried Leibniz hingga Christiaan Huygens pada tahun 1690 dan 1691.[14]Leonhard Euler memperkenalkan huruf sebagai dasar untuk logaritma alami, ditulis dalam surat kepada Christian Goldbach pada tanggal 25 November 1731.[15][16] Euler mulai menggunakan huruf untuk konstanta ini pada tahun 1727 atau 1728, dalam sebuah makalah yang tidak diterbitkan tentang kekuatan ledakan dalam meriam,[17] sedangkan perkenalan pertama dalam sebuah publikasi adalah Mechanica Euler (1736).[18] Meskipun beberapa peneliti menggunakan huruf pada tahun-tahun berikutnya, huruf lebih umum dan akhirnya menjadi standar.[butuh rujukan]
Dalam matematika, standar penulisannya adalah mengatur konstanta sebagai "" yang ditulis dalam huruf miring; standar ISO 80000-2:2019 merekomendasikan penulisan konstanta ini dengan pengaturan huruf dalam gaya tegak, tetapi ini belum divalidasikan oleh komunitas ilmiah.[butuh rujukan]
Aplikasi
Bunga majemuk
Jacob Bernoulli menemukan konstanta ini pada tahun 1683, ketika mempelajari pertanyaan tentang bunga majemuk:[8]
Sebuah akun dimulai dengan $1,00 dan membayar bunga 100 persen per tahun. Jika bunga dikreditkan sekali, pada akhir tahun, nilai akun di akhir tahun adalah $2,00. Apa yang terjadi jika bunga dihitung dan dikreditkan lebih sering sepanjang tahun?
Jika bunga dikreditkan dua kali dalam setahun, tingkat bunga untuk setiap 6 bulan akan menjadi 50%, jadi $ 1 awal dikalikan 1,5 dua kali, menghasilkan $1.00 × 1.52 = $2.25 di akhir tahun. Bunga hasil kuartalan $1.00 × 1.254 = $2.4414..., dan penggabungan hasil bunga bulanan $1.00 × (1 + 1/12)12 = $2.613035… Bila ada n interval majemuk, bunga untuk setiap interval akan 100%/n dan nilainya pada akhir tahun akan menjadi $1.00 × (1 + 1/n)n.
Bernoulli memperhatikan bahwa urutan ini mendekati batas (kekuatan minat) dengan nilai n yang lebih besar dan, dengan demikian, interval penggabungan yang lebih kecil. Penggunaan bunga mingguan (n = 52) menghasilkan $ 2,692597 ..., sementara penggunaan bunga uang harian (n = 365) menghasilkan $ 2,714567 ... (sekitar dua sen lebih). Batasnya sebagai n tumbuh besar adalah jumlah yang kemudian dikenal sebagai e. Artinya, dengan penggabungan kontinu, nilai akun akan mencapai $2.7182818...
Secara lebih umum, akun yang dimulai dari $ 1 dan menawarkan tingkat bunga tahunan sebesar R, setelah itu t tahun, hasil dari eRt dolar dengan penambahan bunga terus-menerus.
(Perhatikan di sini karena R adalah desimal yang setara dengan suku bunga yang dinyatakan sebagai persentase, jadi untuk bunga 5%, R = 5/100 = 0.05.)
Batasan varian unit (dan juga deviasi standar unit) menghasilkan 12 dalam eksponen, dan batasan luas total unit di bawah kurva menghasilkan faktor .[bukti] Fungsi ini simetris x = 0, di mana ia mencapai nilai maksimumnya , dan memiliki titik belok di x = ±1.
Kekacauan
Aplikasi lain dari e, juga ditemukan sebagian oleh Jacob Bernoulli bersama dengan Pierre Raymond de Montmort, Ada dalam masalah kekacauan, juga dikenal sebagai masalah cek topi:[19]n tamu diundang ke pesta, dan di depan pintu, semua tamu memeriksa topi mereka dengan kepala pelayan, yang pada gilirannya menempatkan topi ke dalam n kotak, masing-masing diberi label dengan nama satu tamu. Tapi kepala pelayan belum menanyakan identitas para tamu, jadi dia menempatkan topi ke dalam kotak yang dipilih secara acak. Masalah de Montmort adalah menemukan probabilitas bahwa tidak ada topi yang dimasukkan ke kotak yang tepat. Probabilitas ini, dilambangkan dengan , didefinisikan sebagai:
Dengan n sebagai nilai jumlah tamu cenderung tak terbatas, nilai pn akan semakin mendekati 1 / e. Selanjutnya, banyaknya cara penempatan topi ke dalam kotak sehingga tidak ada topi yang berada di kotak yang tepat adalah n!/e (dibulatkan ke bilangan bulat terdekat untuk setiap bilangan positif n).[20]
Masalah perencanaan yang optimal
Nilai maksimum dari dapat diperoleh saat . Selain itu, untuk nilai basis , nilai maksimum dari diperoleh saat (Permasalahan Steiner).
Dalam permasalahan lain, sebatang blok dengan panjang L dipecah menjadi n bagian yang sama. Nilai dari n yang memaksimalkan produk dari panjang adalah:[21]
atau
Asimtotik
Angka e terjadi secara alami sehubungan dengan banyak masalah yang melibatkan asimtotik. Contohnya adalah Rumus Stirling untuk asimtotik dari fungsi faktorial, di mana kedua bilangan tersebut e dan π muncul:
^Jacob Bernoulli mempertimbangkan masalah peracikan bunga yang terus-menerus, yang menyebabkan ekspresi seri untuk e. Lihat: Jacob Bernoulli (1690) "Quæstiones nonnullæ de usuris, cum solutione problematis de sorte alearum, propositi in Ephem. Gall. A. 1685" (Beberapa pertanyaan tentang minat, dengan solusi masalah tentang permainan peluang, diusulkan dalam Journal des Savants (Ephemerides Eruditorum Gallicanæ), pada tahun (anno) 1685.**), Acta eruditorum, hal 219–23. On page 222, Bernoulli poses the question: "Alterius naturæ hoc Problema est: Quæritur, si creditor aliquis pecuniæ summam fænori exponat, ea lege, ut singulis momentis pars proportionalis usuræ annuæ sorti annumeretur; quantum ipsi finito anno debeatur?" (Ini adalah masalah jenis lain: Pertanyaannya adalah, jika beberapa pemberi pinjaman menginvestasikan [sebuah] sejumlah uang [dengan] bunga, biarlah itu menumpuk, sehingga setiap saat menerima bagian proporsional dari bunga tahunannya; berapa dia akan terutang [pada] akhir tahun?) Bernoulli menyusun deret pangkat untuk menghitung jawabannya, dan kemudian menulis: " … quæ nostra serie [ekspresi matematika untuk deret geometri] &c. major est. … si a=b, debebitur plu quam 2½a & minus quam 3a." (… yang deret kami [deret geometri] lebih besar [dari]. … jika a=b, [pemberi pinjaman] akan berutang lebih dari 2½a dan kurang dari 3a.) Jika a=b, deret geometri direduksi menjadi deret untuk a × e, jadi 2.5 < e < 3. (** Referensinya adalah pada masalah yang diajukan oleh Jacob Bernoulli dan yang muncul dalam "Journal des Sçavans" tahun 1685 di bagian bawah page 314.)
^Lettre XV. Euler à Goldbach, dated November 25, 1731 in: P.H. Fuss, ed., Correspondance Mathématique et Physique de Quelques Célèbres Géomètres du XVIIIeme Siècle … (Korespondensi matematis dan fisik dari beberapa ahli geometri terkenal abad ke-18), vol. 1, (St. Petersburg, Rusia: 1843), hal 56–60, lihat terutama p. 58. From p. 58: " … (e denotat hic numerum, cujus logarithmus hyperbolicus est = 1), … " (… (e menunjukkan bilangan yang logaritma hiperboliknya [yaitu, alami] sama dengan 1) …)
^Leonhard Euler, Mechanica, sive Motus scientia analytice exposita (St. Petersburg (Petropoli), Rusia: Akademi Ilmu Pengetahuan, 1736), vol. 1, Bab 2, Bagian 11, paragraf 171, hal. 68. Dari halaman 68:Erit enim seu ubi e denotat numerum, cuius logarithmus hyperbolicus est 1. (Jadi [yaitu, c adalah kecepatannya] sebagai or , di mana e menunjukkan bilangan yang logaritma hiperboliknya [yaitu, alami] adalah 1.)
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2016. Antillattus placidus Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Arachnida Ordo: Araneae Famili: Salticidae Genus: Antillattus Spesies: Antillattus placidus Nama binomial Antillattus placidusBryant, 1943 Antillattus placidus adalah s...
Final Piala UEFA 2005Berkas:Lisboa2005.jpgMatch programme coverTurnamenPiala UEFA 2004–2005 Sporting CP CSKA Moscow 1 3 Tanggal18 Mei 2005StadionEstádio José Alvalade, LisbonPemain Terbaik Daniel Carvalho (CSKA Moscow)[1][2]WasitGraham Poll (Inggris)[3]Penonton47,085CuacaCerah28 °C (82 °F)56% kelembaban← 2004 2006 → Final Piala UEFA 2005 adalah pertandingan final dari Piala UEFA 2004–2005, musim ke-34 dari Piala UEFA, turnamen sepak bola k...
Peta menunjukkan lokasi Gerona Data sensus penduduk di Gerona Tahun Populasi Persentase 199059.486—199563.7401.4%200072.6182.84%200782.0221.69% Gerona adalah munisipalitas yang terletak di provinsi Tarlac, Filipina. Pada tahun 2010, munisipalitas ini memiliki populasi sebesar 83.084 jiwa. Pembagian wilayah Secara administratif Gerona terbagi menjadi 44 barangay, yaitu: Abagon Amacalan Apsayan Ayson Bawa Buenlag Bularit Calayaan Carbonel Cardona Caturay Danzo Dicolor Don Basilio Luna Mabini ...
The Discreet Charm of the BourgeoisiePoster rilis teatrikalSutradaraLuis BuñuelProduserSerge SilbermanDitulis oleh Luis Buñuel Jean-Claude Carrière Pemeran Fernando Rey Paul Frankeur Delphine Seyrig Stéphane Audran Bulle Ogier Jean-Pierre Cassel SinematograferEdmond RichardPenyuntingHélène PlemiannikovDistributor20th Century FoxTanggal rilis 15 September 1972 (1972-09-15) Durasi102 menitNegara France Italy Spain BahasaPrancisAnggaran$800,000 The Discreet Charm of the Bourgeoisie (P...
Битва у ХрисополисаОсновной конфликт: Гражданские войны времён тетрархии Римская империя в 317 году, на конец первой войны между Константином и Лицинием. Дата 18 сентября, 324 Место Хризополис, Вифиния (ныне Ускюдар , Стамбул , Турция ) Итог Поражение Лициния Противники Армия ...
1998 American animated musical romantic comedy-drama film The Lion King 2 redirects here. For the upcoming prequel to the 2019 film, see Mufasa: The Lion King. The Lion King II: Simba's PrideHome video release posterDirected byDarrell RooneyScreenplay by Flip Kobler Cindy Marcus Produced byJeannine RousselStarring Matthew Broderick Neve Campbell Moira Kelly Nathan Lane Ernie Sabella Robert Guillaume Andy Dick Lacey Chabert Edited byPeter LonsdaleMusic byNick Glennie-SmithProductioncompaniesWa...
Cet article est une ébauche concernant un peintre serbe. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Milan KonjovićNaissance 28 janvier 1898SomborDécès 20 octobre 1993 (à 95 ans)BelgradeNationalité SerbeActivité PeintreMouvement ExpressionnismeDistinction Académie serbe des sciences et des artsSite web (sr + en) konjovic.rsmodifier - modifier le code - modifier Wikidata Milan Konj...
GordonGordon nel 1863, subito dopo aver raggiunto il campo dell'esercito dell'Unione a Baton Rouge, in Louisiana.SoprannomeWhipped Peter, Peter (Gordon potrebbe forse essere un cognome[1]) Dati militariForza armata Esercito degli Stati Uniti d'America UnitàCorps d'Afrique GradoSergente GuerreGuerra di secessione americana BattaglieAssedio di Port Hudson [2] voci di militari presenti su Wikipedia Manuale Gordon, conosciuto anche come Peter il fustigato (Whipped Peter) (... –...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) تيودور فاسيلي معلومات شخصية الميلاد 16 أغسطس 1947 (77 سنة) بلويشت الطول 173 سنتيمتر[1] الجنسية رومانيا الوزن 66 كيلوغرام[1] الحياة العملي...
This is a list of notable ecologists. A-D Rachel Carson John Aber (United States) Aziz Ab'Saber (Brazil) Charles Christopher Adams (United States) Warder Clyde Allee (United States)[1] Herbert G. Andrewartha (Australia) Benjamin C. Augustine (United States) Sarah Martha Baker (UK) Fakhri A. Bazzaz (United States) John Beard (UK) William Dwight Billings (United States) Louis Charles Birch (Australia) Murray Bookchin (United States) George Bornemissza (Australia) Emma Lucy Braun (Unite...
Village in Polk County, Nebraska, United States Village in Nebraska, United StatesShelby, NebraskaVillageDowntown Shelby, October 2011Location of Shelby, NebraskaCoordinates: 41°11′38″N 97°25′34″W / 41.19389°N 97.42611°W / 41.19389; -97.42611CountryUnited StatesStateNebraskaCountyPolkArea[1] • Total0.56 sq mi (1.46 km2) • Land0.56 sq mi (1.46 km2) • Water0.00 sq mi (0.00...
МифологияРитуально-мифологическийкомплекс Система ценностей Сакральное Миф Мономиф Теория основного мифа Ритуал Обряд Праздник Жречество Мифологическое сознание Магическое мышление Низшая мифология Модель мира Цикличность Сотворение мира Мировое яйцо Мифическое �...
Егия Тынтесянарм. Եղիա Տնտեսյան Основная информация Дата рождения 29 марта (10 апреля) 1834(1834-04-10) Место рождения Константинополь, Османская империя Дата смерти 23 апреля (5 мая) 1881(1881-05-05) (47 лет) Место смерти Константинополь, Османская империя Страна Османская ...
Pour les articles homonymes, voir Restauration. Royaume de FranceSeconde Restauration 7 juillet 1815 – 2 août 1830(15 ans et 26 jours)Drapeau blanc du royaume de France[1]. Armoiries de royaume de France. Hymne Le Retour des Princes français à Paris Le royaume de France en 1815.Informations générales Statut Monarchie constitutionnelle Texte fondamental Charte de 1814 Capitale Paris Langue(s) Français Religion Catholicisme Histoire et événements 8 juillet 1815 Re...
Private school in Trois-Rivières, Quebec, CanadaSéminaire Saint-Joseph de Trois-RivièresSTR coat of armsAddress858, rue LavioletteTrois-Rivières, Quebec, G9A 5S3CanadaCoordinates46°20′55″N 72°32′41″W / 46.348557°N 72.544703°W / 46.348557; -72.544703InformationSchool typePrivateMottoFrench: Religion et Patrie(Religion and Country)Established1860 (1860) as the Collège de Trois-RivièresCampusUrban, parkTeam nameVert et OrDirectorPierre NormandWebsit...
منتخب الهند لكأس ديفيز منتخب الهند لكأس ديفيز البلد الهند الكابتن ماهيش بوباثي المدرب زيشان علي تصنيف ITF 20 ▼ الألوان sky blue & white كأس ديفيز أول سنة 1921 سنوات اللعب 81 Ties played (W–L) 196 (117–79) سنوات فيمجموعة العالم 13 (7–13) المركز الثاني 3 (1966، 1974 & 1987) أكثر إجمالي إنتصارات ليندر ب�...
Halaman ini berisi artikel tentang perusahaan. Untuk pendirinya, lihat Arthur E. Andersen. Untuk kasus hukum, lihat Arthur Andersen LLP v. Amerika Serikat. Untuk penulis lagu dan komposer, lihat Arthur Olaf Andersen. Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Arthur Andersen –...
Portable lighting device For other uses, see Lantern (disambiguation). A railroad brakeman's signal lantern, fueled by kerosene. Look up lantern in Wiktionary, the free dictionary. A lantern is an often portable source of lighting, typically featuring a protective enclosure for the light source – historically usually a candle, a wick in oil, or a thermoluminescent mesh, and often a battery-powered light in modern times – to make it easier to carry and hang up, an...