可羅薩里過剩數

可羅薩里過剩數Colossally superabundant number,有時會簡稱CA)是指一正整數n,存在一正數ε,使得對於所有正整數m,下式恆成立:

其中σ為除數函數,是所有正因數(包括本身)的和[1]

頭幾個超過剩數為: 2, 6, 12, 60, 120, 360, 2520, 5040... (OEIS數列A004490

所有的可羅薩里過剩數都是超過剩數,但有些整數是超過剩數,而不是可羅薩里過剩數。

歷史

可羅薩里過剩數最早是由斯里尼瓦瑟·拉马努金所發現,他在1915年提出的相關高合成數的論文中原來有包括有可羅薩里過剩數的相關研究[2]。不過因為期刊發行單位倫敦數學學會的財務問題,拉马努金為了減少論文的篇幅,願意刪除論文中有關可羅薩里過剩數的內容[3]。拉马努金的研究和黎曼猜想有關.配合他提出的有關可羅薩里過剩數上下限的假設,可以證明一個稱為羅賓不等式的不等式在所有足夠大英语sufficiently large的正整數n時都成立[4]

拉马努金發現的可羅薩里過剩數比萊昂尼達斯·阿勞哥魯英语Alaoglu保羅·艾狄胥所發現的類似整數要嚴格一些些[5]

性質

可羅薩里過剩數是由有許多因數的整數組成的數列,以除數函數和本身之間的闗係來判斷是否有很多因數。一正整數n的除數函數是所有n的正因數的和(包括1和n)。保羅·巴赫曼證明σ(n)的平均值大致接近π²n / 6[6]多瑪·哈肯·格朗沃爾英语Thomas Hakon Grönwall提出的格朗沃爾定理證明σ(n)最大值的數量值略大於上述的公式,而且存在一個遞增數列n使得整數σ(n) 大致和eγnlog(log(n))大小相當,其中γ為欧拉-马歇罗尼常数[6]。可羅薩里過剩數需要在針對某一特定ε > 0的條件下,下列函數在n為可羅薩里過剩數時有最大值:

保羅·巴赫曼及古倫沃爾證明了針對每個小於0的ε > 0,此函數會有一最大值,而且當ε越接近0,最大值的數值會越大。因此有無窮多個Colossally過剩數,不過分佈的非常稀疏,在小於1018的範圍內只有22個[7]

針對每一個ε值,上述的函數均存在一個全域極大值。但各ε值下函數的全域極大值可能有多個點,不一定只有一個點。阿勞哥魯及保羅·艾狄胥研究在一定特定值的ε值下,會有幾個不同的n使上述函數均為全域最大值,針對大多數的ε值,只有一個n使函數有全域最大值。不過艾狄胥和讓-路易·尼古拉(Jean-Louis Nicolas)證明有一些離散的ε值形成的集合,在該ε值下函數會有2或4個不同的n值,都會使函數有相同的全域最大值[8]

Alaoglu及保羅·艾狄胥合作在1944年發表的論文中試圖證明二個連續可羅薩里過剩數之間的比值恆為質數,但沒有成功。後來將上述的敘述變成一個猜想,而且證明此猜想會依循超越數論四個指數猜想英语Four exponentials conjecture中的一個特例,也就是對於二相異的質數p,q及一實數t,只有在t為正整數時才能同時使ptqt均為有理數

根據六個指數定理英语six exponentials theorem中有關三個質數的類似結果(也就是卡尔·西格尔聲稱由他本人證明的定理),阿勞哥魯及保羅·艾狄胥已證明二個連續可羅薩里過剩數之間的比值恆為質數或是半質數(二個相異質數乘積)。

阿勞哥魯及保羅·艾狄胥的猜想尚未被證實或推翻。若其猜想成立,表示存在一個由非相異質數組成的數列p1, p2, p3,…,使得第n個可羅薩里過剩數可以用下式表示:

假設上述猜想成立,此質數數列的前幾項為2, 3, 2, 5, 2, 3, 7, 2 (OEIS數列A073751),而且所有的ε值下,函數只會有1或2的n值使函數有相同的全域最大值,沒有任何一個ε值會對應4個使函數有相同全域最大值的n值。

和黎曼猜想的關係

1980年代蓋.羅賓證明黎曼猜想等於以下的不等式對於所有大於5040的正整數都成立[9]

n = 5040時上述等式不成立,但羅賓證明若黎曼猜想成立時,上述不等式只對部分小於5040的n會不成立,對任何大於5040的n都會成立,上述不等式稱為羅賓不等式。若除了5040外,仍有其他大於5040的正整數使羅賓不等式不成立,該些正整數中至少會有一個是可羅薩里過剩數,因此黎曼猜想也等於上述不等式對於所有大於5040的可羅薩里過剩數都成立。

參考資料

  1. ^ K. Briggs, "Abundant Numbers and the Riemann Hypothesis", Experimental Mathematics 15:2 (2006), pp. 251–256, doi:10.1080/10586458.2006.10128957.
  2. ^ S. Ramanujan, "Highly Composite Numbers", Proc. London Math. Soc. 14 (1915), pp. 347–407, MR2280858.
  3. ^ S. Ramanujan, Collected papers, Chelsea, 1962.
  4. ^ S. Ramanujan, "Highly composite numbers. Annotated and with a foreword by J.-L. Nicholas and G. Robin", Ramanujan Journal 1 (1997), pp. 119–153.
  5. ^ L. Alaoglu, P. Erdős, "On highly composite and similar numbers", Trans. Amer. Math. Soc. 56:3 (1944), pp. 448–469, MR0011087.
  6. ^ 6.0 6.1 G. Hardy, E. M. Wright, An Introduction to the Theory of Numbers. Fifth Edition, Oxford Univ. Press, Oxford, 1979.
  7. ^ J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, American Mathematical Monthly 109 (2002), pp. 534–543.
  8. ^ P. Erdős, J.-L. Nicolas, "Répartition des nombres superabondants", Bull. Math. Soc. France 103 (1975), pp. 65–90.
  9. ^ G. Robin, "Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann", Journal de Mathématiques Pures et Appliquées 63 (1984), pp. 187-213.

外部連結

Read other articles:

Памятник культуры Малопольского воеводства[1]: регистрационный номер А7 ДостопримечательностьЧасовня СигизмундаKaplica Zygmuntowska Часо́вня Сигизму́нда 50°03′16″ с. ш. 19°56′08″ в. д.HGЯO Страна  Польша Краков Краков и Дзельница I Старе-Място Конфессия католиче...

 

 

Questa voce sugli argomenti sport e argentina è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. ATP Buenos Aires 1981 Sport Tennis Data 16 novembre – 22 novembre Edizione 53a Superficie Terra rossa Campioni Singolare Ivan Lendl Doppio Marcos Hocevar / João Soares 1980 1982 L'ATP Buenos Aires 1981 è stato un torneo di tennis giocato sulla terra rossa. È stata la 53ª edizione del torneo, che fa parte...

 

 

У этого термина существуют и другие значения, см. Бамбук (значения). Бамбук Научная классификация Домен:ЭукариотыЦарство:РастенияКлада:Цветковые растенияКлада:МонокотыКлада:КоммелинидыПорядок:ЗлакоцветныеСемейство:ЗлакиПодсемейство:БамбуковыеТриба:БамбуковыеПодт�...

Eurovision Song Contest 2014Country PortugalNational selectionSelection processFestival da Canção 2014Selection date(s)Semi-final:8 March 2014Final:15 March 2014Selected entrantSuzySelected songQuero ser tuaSelected songwriter(s)EmanuelFinals performanceSemi-final resultFailed to qualify (11th)Portugal in the Eurovision Song Contest ◄2012 • 2014 • 2015► Portugal participated in the Eurovision Song Contest 2014 with the song Quero ser tua written b...

 

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

 

 

Massacre de Gnadenhütten Monument commémorant le massacre de Gnadenhütten.Inscription : Here triumphed in death ninety Christian Indians, March 8, 1782. Date 8 mars 1782 Victimes Amérindiens chrétiens Morts 96 Guerre Guerre d'indépendance des États-Unis Coordonnées 40° 21′ 15″ nord, 81° 26′ 06″ ouest Géolocalisation sur la carte : États-Unis Massacre de Gnadenhütten Géolocalisation sur la carte : Ohio Massacre de Gnadenhütte...

Novel by Gordon Henry The Light People AuthorGordon HenryCountryUnited StatesLanguageEnglishGenreFiction, NovelPublished1994, 2003PublisherUniversity of Oklahoma Press, Michigan State University PressMedia typePrintPages226ISBN9780806125862 The Light People is a 1994 novel written by Gordon Henry. The book won the American Book Award in 1995.[1] The Light People is a work of Native American fiction, composed of many distinct but ultimately interconnected stories happening in and ...

 

 

Award Award 1919 Nobel Prize in LiteratureCarl Spittelerin special appreciation of his epic, Olympian Spring.Date 13 November 1920 (announcement) 10 December 1920 (ceremony) LocationStockholm, SwedenPresented bySwedish AcademyFirst awarded1901WebsiteOfficial website ← 1918 · Nobel Prize in Literature · 1920 → The 1919 Nobel Prize in Literature was awarded to the Swiss poet Carl Spitteler (1845–1924) in special appreciation of his epic, Olympian Spring.[...

 

 

Mountain range in Hungary This article is about the mountain range in Hungary. For other uses, see Matra (disambiguation). Location of Mátra (red) within physical subdivisions of Hungary Kékestető (1014 m) Mátra Winter landscape in Mátra The Mátra [ˈmaːtrɒ] (Slovak: Matra) is a mountain range in northern Hungary, between the towns Gyöngyös and Eger. The country's highest peak, Kékestető (1014 m), belongs to this mountain range. The Mátra is part of the North Hungarian Mo...

Type 69-IUn Type 69-II iracheno catturato durante la guerra del GolfoDescrizioneTipocarro armato da combattimento Equipaggio4 ProgettistaIstituto di ricerca Nº 60 CostruttoreFirst Inner Mongolia Machinery Factory Data impostazione1963-1974 Data entrata in servizio1982 Data ritiro dal serviziopresente Utilizzatore principale Cina Altri utilizzatorivedi utilizzatori Altre variantivedi varianti Dimensioni e pesoLunghezza6,24 m m[1] Larghezza3,3 m[1] Altezza2,8 m Peso36...

 

 

Berikut ini adalah daftar tokoh terkenal yang berpindah agama dari Kristen ke Yahudi. Komunitas Kristen Proselit Abayudaya[1] Bnei Menashe[2] Bene Ephraim diklaim merupakan Yahudi yang masuk ke Kristen, kemudian kembali ke Yahudi[3] B'nai Moshe (Yahudi Inka)[4] Yahudi San Nicandro[5] Subbotnik Mantan rohaniwan/teolog Kristen William G. Dever[6] Ahuvah Gray (née Delores Gray) Géza Vermes[7][8] Tokoh Kristen lain yang berpindah k...

 

 

  لمعانٍ أخرى، طالع كاريا (توضيح).   هذه المقالة عن الإقليم في آسيا الصغرى. لمعانٍ أخرى، طالع كاريا. كاريامعلومات عامةالمنطقة تركيا وصفها المصدر  القائمة ... موسوعة باولي الحقيقية للدراسات الكلاسيكية القاموس الحقيقي للآثار الكلاسيكية للوبكر الموسوعة الكتابية ل...

2021 American filmRomeo Santos: King of BachataFilm posterDirected byDevin AmarCharles ToddProduced byNed DoyleSheira Rees-DaviesJames RothmanStarringRomeo SantosCinematographyRick SiegelEdited byMatt MitchenerDistributed byHBORelease dates June 25, 2021 (2021-06-25) (Pay-Per-View) July 30, 2021 (2021-07-30) (HBO Max)Running time1:32:11CountryUnited StatesLanguageEnglish & Spanish Romeo Santos: King of Bachata is a 2021 documentary film directed by Devin Ama...

 

 

1933 film by A. Edward Sutherland Too Much HarmonyNewspaper advertisement for filmDirected byA. Edward SutherlandWritten byJoseph L. Mankiewicz Harry RuskinProduced byWilliam LeBaronStarringBing CrosbyJack OakieRichard Skeets GallagherHarry GreenJudith AllenCinematographyTheodor SparkuhlEdited byRichard C. CurrierMusic byHeinz RoemheldProductioncompanyParamount PicturesDistributed byParamount PicturesRelease date September 23, 1933 (1933-09-23) Running time76 minutesCountryUnit...

 

 

National constitution of Mongolia Constitution of MongoliaOverviewOriginal titleМонгол УлсынҮндсэн ХуульJurisdictionMongoliaRatified13 January 1992Date effective12 February 1992SystemUnitary semi-presidential constitutional republicGovernment structureBranchesThreeHead of statePresidentChambersUnicameral(State Great Khural)ExecutivePrime Minister led cabinetJudiciaryConstitutional Court Supreme CourtFederalismNoElectoral collegeNoHistoryFirst legislature20 July 1992...

Perpajakan di Kekaisaran Utsmaniyah berubah drastis dari waktu ke waktu; serta merupakan tambal sulam yang kompleks dari berbagai pajak, pengecualian, dan adat istiadat setempat. Warisan pemerintahan terdahulu Ketika Kekaisaran Utsmaniyah menaklukkan wilayah baru, ia mengadopsi dan mengadaptasi sistem pajak yang ada yang sudah digunakan oleh pemerintahan sebelumnya.[1] Misalnya, pada penaklukan Beograd, Sultan menginstruksikan seorang pejabat untuk mengumpulkan informasi tentang siste...

 

 

Mexican government from 1821 to 1823 Mexican America redirects here. For the professional wrestling stable, see Mexican America (professional wrestling). Mexican EmpireImperio Mexicano (Spanish)Imperium Mexicanum (Latin)1821–1823 Top: Flag of the Three Guarantees Bottom: State Flag Imperial Coat of arms Motto: Independencia, Unión, ReligiónIndependence, Union, ReligionCapitalMexico CityCommon languagesSpanishReligion Roman Catholicism (official)GovernmentUnitary consti...

 

 

Pour les articles homonymes, voir Ixion (homonymie). (28978) Ixion Ixion prise par le télescope spatial Hubble en février 2006.Caractéristiques orbitalesÉpoque 22 octobre 2004 (JJ 2453300,5)Établi sur 172 observ. couvrant 11665 jours (U = 3) Demi-grand axe (a) 5,910 896 × 109 km(39,419 ua) Périhélie (q) 4,483 896 × 109 km(29,85 ua) Aphélie (Q) 7,337 896 × 109 km(48,98 ua) Excentricité (e) 0,242 Période de révolution (Prév) 90 401 ± 7 j(247,5 a) Vitess...

Art and architecture inspired by historic styles This article is about styles in art and architecture. For philosophical theories known as historicism, see Historicism. You can help expand this article with text translated from the corresponding article in German. (July 2013) Click [show] for important translation instructions. View a machine-translated version of the German article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but tra...

 

 

Russian naval officer (1813–1876) In this name that follows Eastern Slavic naming customs, the patronymic is Ivanovich and the family name is Nevelskoy. You can help expand this article with text translated from the corresponding article in Russian. (October 2014) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the t...