大衍求一术

大衍求一术,又名求一术,是中国数学史中通常被用来泛指南宋数学家秦九韶发明的求解中国剩余定理的历史算法(不是中国剩余定理的现代算法)。秦九韶原来的《数书九章》求解一次同余式组的算法的总称叫做大衍总数术,或大衍术、而其中一个计算乘率的子程序,才是大衍求一术

大衍术是秦九韶最得意的创作,特放在《数书九章》之首。欧洲直到18世纪德国数学家高斯,才有相类的结果。秦九韶大衍术领先世界五百余年。

历史

一次同余式组问题,最早见于《孙子算经》卷下第二十六问:

有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?答曰:二十三。術曰:三三數之,賸二,置一百四十;五五數之,賸三,置六十三;七七數之,賸二 ,置三十。并之,得二百三十三,以二百一十減之,即得。凡三三數之,賸一,則置七十;五五數之,賸一,則置二十一;七七數之,賸一,則置十五。一百六以上,以一百五 減之,即得。

宋周密《志雅堂杂钞》述鬼谷算,又名隔墙算
杨辉《继古摘奇算法》记载剪管术解孙子物不知数的算法:

术曰:三数剩一下七十,五数剩一下二十一,七数剩一下五十。三位并之得二百三十三,满一百五去之,减两个一百五,余二十三为答数

七数剩一,八数剩二,九数剩三,问本总数几何?答曰:四百九十八

明严恭《通源算法》:[1]

今有散钱不知其数,作七十七穿之,欠五十凑穿,若作七十八穿之,不多不少。问钱数若干?答曰:二千一百六文

明朝数学家程大位有《孙子歌》如下:[2]

三人同行七十希,五樹梅花廿一支,七子團圓正半月,除百零五使得知

清代学者张敦仁在《求一算术》中提出大衍求一术源自《孙子算经》物不知数,后世学者,多从其说。但近年李俨钱宝琮等学者提出大衍求一术很可能源自西汉《三统历》中计算上元积年的“通其率”近似法,其后《古四分历》和《乾象历》沿用此法。[3][4]

事实上,秦九韶在《数书九章序》中就写道:“独大衍法不载《九章》,未有能推之者,历家推演法颇用之”,“历家虽用,其用不知,小试经世,姑推所为,述大衍第一。”

大衍总数术

秦九韶大衍总数术

秦九韶大衍总数术原载《数书九章》第一卷上 大衍类 《蓍卦发微》:

置诸元数,两两连环求等,约奇弗约偶,遍约毕,乃变元数,皆曰定母,列右行,各立天元一为子,列左行,以定诸母,互乘左行之子,各得名曰衍数,次以各定母满去衍数,各余名曰奇数,以奇数与定母,用大衍术求一。

程序如下:[5][6][7]

1。将问数(有关问题中的数字)[……],分为四大类
  • 元数:整数
  • 收数:带小数的有理数。
  • 通数:分数
  • 复数:10的倍数。
2.如果问数[……]是收数,则以10的倍数乘之化为元数列,按元数计算。
3:如果问数[……]包含分数,则化为元数列,按元数计算。
4。当问数[……]是整数
4.1:将问数成对以其最大公约数约化,约奇数不约偶数;如二数都是偶数,约化其中之一。如二数中一个数是10的倍数,另一数的个位是5,则约化偶数不约化奇数。最后得到一组

定母:[……]。

定母之中避免过多1,得到一个“1”即可。各定母为相应问数的因子;定母两两互为质数。定母的乘积称为衍母,是问数的最小公倍数。

衍母 v=∏ ; i=1…n;
4.3:将各定母分别除衍母,得到一组衍数:[……]
其中 衍数 v/
4.4 用定母 约化衍数 (i=1……n);余数 称为奇数
4.4 当奇数=1时,乘率=1。

奇数≠1时,从定母奇数,用大衍求一术计算乘率;(i=1……n)。

4.5 衍數乘以乘率,稱為用數
4.6 各餘數乘以相應的用數,得出各總
4.7 各總的總和,稱為總數
4.8 把總數除以衍母所得的餘數,便是所求數
例一:《孙子算经》“物不知数”,
  • 問数:3,5,7;因两两互素,也即定母。
  • 定母:3,5,7
  • 衍母=3*5*7=105
  • 衍数:35,21,15
  • 奇数:2,1,1
  • 乘率:2,1,1
  • 用數:70,21,15
  • 餘數:2,3,2
  • 各總:140,63,30
  • 總數=140+63+30=233
  • 所求數=23
例二
  • 問数:108,57,75,40
  • 定母:27,19,25,8
  • 衍母 =27*19*25*8=102600
  • 衍数:3800,5400,4104,12825
  • 奇数:20,4,4,1
  • 乘率:23,5,19,1

大衍求一术

求乘率

秦九韶《数书九章》大衍求一术

秦九韶用大衍求一术解:

乘率 * 奇数≡1(mod 定母)

大衍求一術云︰置奇右上,定居右下,立天元一於左上。先以右上除右下,所得商數與左上一相生,入左下。然後乃以右行上下,以少除多,遞互除之,所得商數隨即遞互累乘,歸左行上下。須使右上末後奇一而止,乃驗左上所得,以為乘率。

例一:定母 83,奇数 65,求乘率x[8][9]

x*65≡1 mod(83)
答:乘率=23
置天元一于左上角,置奇数于右上角,置定数右下角,置0于左下角。
大衍 奇数
0 定母
1 65
0 83
83/65 =1, 置左下,余数 18 置右下。
1 65 0
1 18 1
65/18 商=3,加于左上,余数11,置右上
4 11 3
1 18 0
18/11,商=1,乘左上,加于左下,余数7,置右下。
4 11 0
5 7 1
余类推,直到右上=1 为止。
9 4 1
5 7 0
9 4 0
14 3 1
23 1 1
14 3 0
右上=1,左上=23=乘率。

1 (mod 83)

参考文献

引用

  1. ^ 李俨 118-120页
  2. ^ 李俨 《大衍求一术的过去和未来》
  3. ^ 钱宝琮 《秦九韶数书九章研究》 621页
  4. ^ 李继闵 145-155
  5. ^ 王守义 10-38
  6. ^ 李俨 123-133
  7. ^ 袁向东,李文林 159-179
  8. ^ 李俨 128-130页
  9. ^ 李倍始 p341

来源

  • 李俨 :《大衍求一术的过去和未来》《李俨钱宝琮科学史全集》卷6 121页《程大位的孙子歌》辽宁教育出版社. 1998
  • 钱宝琮:《秦九韶数书九章研究》》《李俨钱宝琮科学史全集》卷9
  • 吴文俊 主编:《中国数学史大系》 第五卷 第三、四、五编
  • 吴文俊 主编:《秦九韶与数书九章》 北京师范大学出版社 1987
  • [比利时]李倍始(Ulrich Libbrecht):Chinese Mathematics in the Thirteen Century (The Shu-Shu-Chiu-Chang of Chin Chiu shao) Dover Publication ISBN 0486446190
  • 秦九韶 原著,王守义 遗著,李俨 审校:《数书九章新释》 安徽科学技术出版社 1992 ISBN 7-5337-0788-5/O
  • 李继闵:《大衍求一术溯源》,吴文俊 主编 :《秦九韶与数书九章》 138-158页 北京师范大学出版社 1987
  • 袁向东、李文林:《数书九章中的大衍类问题和大衍总数术》 ,吴文俊 主编 :《秦九韶与数书九章》 159-179 北京师范大学出版社 1987

参见

Read other articles:

Ali Baba beralih ke halaman ini. Untuk karakter, lihat Ali Baba (karakter). Untuk penggunaan lain, lihat Ali Baba (disambiguasi). Kassim Baba di dalam gua karya Maxfield Parrish (1909) Ali Baba dan Empat Puluh Pencuri (علي بابا والأربعون لصا) adalah sebuah cerita rakyat yang tercantum dalam banyak versi Seribu Satu Malam. Antoine Galland, yang mendengar cerita tersebut dari pengisah cerita Suriah Hanna Diyab, menambahkan citra tersebut ke Seribu Satu Malam pada abad ke-18. ...

 

1994 Wyoming gubernatorial election ← 1990 November 8, 1994 (1994-11-08) 1998 → Turnout84.51% Registered 4.52% 44.31% of Total Population 9.01%   Nominee Jim Geringer Kathy Karpan Party Republican Democratic Popular vote 118,016 80,747 Percentage 58.72% 40.17% County resultsGeringer:      40–50%      50–60%      60–70%      70–80%Karpan: &...

 

Partai Aceh Aman Seujahtra Ketua umumGhazali Abbas AdanSekretaris JenderalNusri HamidDibentuk2007Kantor pusatKota Banda AcehKursi di DPRD I?Situs web?Politik IndonesiaPartai politikPemilihan umum Partai Aceh Aman Seujahtra adalah salah satu partai politik di Indonesia. Partai ini ikut dalam Pemilihan Umum Legislatif Indonesia 2009 dan pemilihan anggota parlemen daerah Provinsi Aceh.[1] Sejarah Partai ini adalah partai lokal yang berbasiskan Islam. Tokoh pendirinya adalah Ghazali Abbas...

Astronomical chronology, or astronomical dating, is a technical method of dating events or artifacts that are associated with astronomical phenomena. Written records of historical events that include descriptions of astronomical phenomena have done much to clarify the chronology of the Ancient Near East; works of art which depict the configuration of the stars and planets and buildings which are oriented to the rising and setting of celestial bodies at a particular time have all been dated th...

 

Suspension bridge in New York City Verrazzano Narrows and Verrazzano Bridge redirect here. For the strait over which this bridge crosses, see The Narrows. For other bridges, see Verrazano Bridge (disambiguation). Verrazzano-Narrows BridgeThe Verrazzano Bridge as seen from Fort Wadsworth, Staten Island, in 2016Coordinates40°36′23″N 74°02′44″W / 40.60639°N 74.04556°W / 40.60639; -74.04556Carries13 lanes (7 upper, 6 lower) of I-278 TollCrossesThe NarrowsLocale...

 

Pour les articles homonymes, voir Sima (homonymie). Dans ce nom, le nom de famille précède le nom personnel. Sima Yi Grand tuteur de Wei Naissance 179Xian de Wen (Henan) Décès 7 septembre 251 Noms Chinois simplifié 司马懿 Chinois traditionnel 司馬懿 Hanyu pinyin Sīmǎ Yì Wade-Giles Szŭma I Prénom social Zhòngdá (仲達) nom posthume Wenxuan(文宣) par Cao Wei Roi Xuan (宣王) par Sima Zhao Empereur Xuan du Jin (宣皇帝) par Sima Yan nom de temple Gaozu (高祖) modifier ...

Nova Bus Logo de Nova Bus Un Nova LFS opéré par STM Création 1993 Siège social Saint-Eustache Canada Actionnaires Volvo Activité Autobus Produits Transport en commun Société mère Volvo Bus Site web http://www.novabus.com modifier - modifier le code - voir Wikidata  Nova Bus est une compagnie manufacturière d’autobus urbains basée à Saint-Eustache, au Québec (Canada). La compagnie est détenue par Volvo Bus par le biais de sa filiale Volvo Canada. La compagnie est conn...

 

Eurovision Song Contest 2019Country North MacedoniaNational selectionSelection processInternal selectionSelection date(s)Artist: 25 January 2019Song: 8 March 2019Selected entrantTamara TodevskaSelected songProudSelected songwriter(s)Darko DimitrovRobert BilbilovLazar CvetkoskiKosta PetrovSanja PopovskaFinals performanceSemi-final resultQualified (2nd, 239 points)Final result7th, 305 pointsNorth Macedonia in the Eurovision Song Contest ◄2018 • 2019 ...

 

Voce principale: Casertana Football Club. Unione Sportiva CasertanaStagione 1925-1926Sport calcio Squadra Casertana Prima Divisione3ª nella Sezione Campana della Lega Sud. 1926-1927 Si invita a seguire il modello di voce Questa pagina raccoglie i dati riguardanti l'Unione Sportiva Casertana nelle competizioni ufficiali della stagione 1925-1926. Indice 1 Rosa 2 Risultati 2.1 Prima Divisione 2.1.1 Girone campano 2.1.1.1 Girone di andata 2.1.1.2 Girone di ritorno 3 Statistiche 3.1 Sta...

Principality located in modern day Germany This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Hohenzollern-Hechingen – news · newspapers · books · scholar · JSTOR (July 2016) (Learn how and when to remove this message) Principality of Hohenzollern-HechingenFürstentum Hohenzollern-Hechingen (German)1576–...

 

坐标:43°11′38″N 71°34′21″W / 43.1938516°N 71.5723953°W / 43.1938516; -71.5723953 此條目需要补充更多来源。 (2017年5月21日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:新罕布什尔州 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源...

 

United Nations resolution adopted in 2006 UN Security CouncilResolution 1704UNMIT policeDate25 August 2006Meeting no.5,516CodeS/RES/1704 (Document)SubjectThe situation in East TimorVoting summary15 voted forNone voted againstNone abstainedResultAdoptedSecurity Council compositionPermanent members China France Russia United Kingdom United StatesNon-permanent members Argentina Rep. of the Congo Denmark Ghana Greece Japan Peru ...

British footballer (born 1977) Chris Greenacre Greenacre playing for Wellington Phoenix in 2009.Personal informationFull name Christopher Mark GreenacreDate of birth (1977-12-23) 23 December 1977 (age 46)Place of birth Wakefield, EnglandPosition(s) StrikerTeam informationCurrent team Wellington Phoenix (assistant manager)Youth career1994 Leeds UnitedSenior career*Years Team Apps (Gls)1995–2000 Manchester City 8 (1)1997 → Cardiff City (loan) 11 (2)1998 → Blackpool (loan) 4 (0)1998�...

 

Canadian figure skater Karen MagnussenMagnussen in 1974Full nameKaren Diane Magnussen-CellaBorn (1952-04-08) April 8, 1952 (age 72)Vancouver, British Columbia, CanadaHeight160 cm (5 ft 3 in)[1]Figure skating careerCountryCanadaSkating clubNorth Shore Winter ClubRetired1977 Medal record Representing  Canada Figure skating: Ladies' singles Winter Olympics 1972 Sapporo Singles World Championships 1973 Bratislava Singles 1972 Calgary Singles 1971 Lyon Singles Nort...

 

Open-air museum in Yankee Stadium Monument ParkMonument Park at Yankee StadiumLocation1 East 161st StreetYankee StadiumThe Bronx, New YorkCoordinates40°49′47.22″N 73°55′31.7″W / 40.8297833°N 73.925472°W / 40.8297833; -73.925472FounderNew York Yankees Monument Park is an open-air museum located in Yankee Stadium in the Bronx, New York City. It contains a collection of monuments, plaques, and retired numbers honoring distinguished members of the New York Yank...

This article needs to be updated. Please help update this article to reflect recent events or newly available information. (July 2021) Homicide rates (from firearms) per 100,000 people by country.[1] This is a historical list of countries by firearm-related death rate per 100,000 population in the listed year. Homicide figures may include justifiable homicides along with criminal homicides, depending upon jurisdiction and reporting standards. Not included are suicides, accidental dea...

 

Wilderness area in the northeast corner of Washington state Salmo-Priest WildernessIUCN category Ib (wilderness area)[1]LocationPend Oreille County, Washington, United StatesNearest cityMetaline Falls, WashingtonCoordinates48°55′40″N 117°10′15″W / 48.92778°N 117.17083°W / 48.92778; -117.17083Area41,335 acres (167.28 km2)Established1984Governing bodyU.S. Forest Service Salmo-Priest Wilderness is a 41,335 acre (167.28 km2) wilderne...

 

الأمير مانع بن ربيعة المريدي أمير ومؤسس إمارة الدرعية الأولى فترة الحكم1447 - 1463 (أول أمير على الدرعية) ربيعة بن مانع المريدي معلومات شخصية الميلاد 24 أكتوبر 1400(1400-10-24)الدرعية، شبه الجزيرة العربية الوفاة 14 أغسطس 1463 (62 سنة)الدرعية، شبه الجزيرة العربية الإقامة الدرعية الجنسية شب...

River in Connecticut, United StatesBigelow BrookBigelow Brook in Eastford, CT, along the Natchaug Trail.Location of the mouth within ConnecticutLocationCountryUnited StatesStateConnecticutCountiesTolland, WindhamPhysical characteristicsSourceMashapaug Lake • locationUnion, CT, Tolland County, Connecticut, United States • coordinates42°00′19″N 72°07′43″W / 42.00524°N 72.12868°W / 42.00524; -72.12868 • elev...

 

Scottish Presbyterian minister (1640–1666) Hugh MackailMackail's executionPersonal detailsBornvarious spellings: Hugh or Hew Mackail, McKail, M'Kail, M'Kell, McKel, MacKell, M'Kaill, Mackailec1640Died1666market-cross EdinburghDenominationChurch of Scotland Hugh Mackail (various spellings) (c. 1640–1666), Scottish martyr, was born about 1640 at Liberton, near Edinburgh. His father was Matthew Mackail who was minister at Bothwell before being deprived of his ministry by the government in 1...