八面體半形

八面體半形
八面體半形
類別抽象多胞形英语Abstract polytope
射影多面體英语projective polyhedron
對偶多面體立方體半形
數學表示法
施萊夫利符號{3,4}/2
{3,4}3
性質
4
6
頂點3
歐拉特徵數F=4, E=6, V=3 (χ=1)
組成與佈局
頂點圖3.3.3.3
對稱性
對稱群S4, 24階
特性
不可定向歐拉示性數為1
圖像

立方體半形
對偶多面體

在抽象幾何學中,八面體半形正八面體多面體半形,即由一半數量的正八面體面構成的抽象多面體。這個抽象多面體與正八面體類似,它們的每個頂點都是4個三角形的公共頂點,正八面體有8個面,對應的多面體半形僅有4個面;同時,這個立體無法嵌入在三維歐幾里得空間中[1]

性質

八面體半形是一個不可定向的幾何結構[2],由四個、六條和三個頂點組成[3],其中4個面都是三角形,每個頂點都是4個三角形的公共頂點,在施萊夫利符號中可以用{3,4}3表示[4]。八面體半形的皮特里多邊形同樣為三角形,因此八面體半形的皮特里對偶同樣為八面體半形,是一個自身皮特里對偶的多面體[5]

八面體半形的對偶多面體立方體半形,立方體半形的對稱性與八面體半形相同,皆為24階的S4對稱群[6]

八面體半形可被視為是一種影射多面體[7],可視為由四個三角形構成的實射影平面鑲嵌,要將其視覺化,可以透過將射影平面構築為一個半球體,其邊界上的對蹠點連結了半球體,並將半球體分成了四等分,簡單來說就是將正八面體的點皆與對蹠點相對應的幾何結構。[8]八面體半形也可看成是一個沒有底面的正四角錐,即正八面體的一半[9]

八面體半形可以對稱地表示一個六邊形或一個正方形的施萊格爾圖英语Schlegel diagram

它有著一些特殊的特性:每對頂點之間連接著兩條不同的邊,即每兩個頂點圍成了一個二角形[10]

相關多面體

立方體半形是正多面體的半形體之一,其他也是正多面體的半形之結構有[4]


立方體半形

八面體半形

十二面體半形

二十面體半形

八面體半形可以被截半為截半立方體半形,其為一種擬正則地區圖(quasiregular map)。四面半六面體可以視為截半立方體半形浸入三維空間所形成的立體。[11]

參見

參考資料

  1. ^ Mark Mixer. Introduction to abstract polytopes (PDF). Northeastern University. 2009-05-19 [2021-08-25]. (原始内容存档 (PDF)于2021-08-06). 
  2. ^ Wilson, Steve. Rose window graphs. Ars Mathematica Contemporanea. 2008, 1 (1). 
  3. ^ The hemioctahedron. Regular Map database - map details. [2021-08-24]. (原始内容存档于2016-03-04). 
  4. ^ 4.0 4.1 McMullen, Peter; Schulte, Egon, 6C. Projective Regular Polytopes, Abstract Regular Polytopes 1st, Cambridge University Press: 162–165, December 2002, ISBN 0-521-81496-0 
  5. ^ Wilson, Steve. Cantankerous maps and rotary embeddings of Kn. Journal of Combinatorial Theory, Series B (Elsevier). 1989, 47 (3): 262––273. 
  6. ^ Leemans, Dimitri and Schulte, Egon. Polytopes with groups of type PGL2(q). arXiv preprint arXiv:0909.1991. 2009. 
  7. ^ Mixer, Mark. Transitivity of graphs associated with highly symmetric polytopes (PDF). library.northeastern.edu. 2010 [2021-08-25]. (原始内容存档 (PDF)于2021-08-25). 
  8. ^ Williams, Gordon and Pellicer, Daniel. Quotient representations of uniform tilings. arXiv preprint arXiv:0910.4207. 2009. 
  9. ^ Simonov, VI and Belov, NV. Characteristics of the crystal structure of rinkite. Soviet Physics Crystallography. 1968, 12 (5): 740–744. 
  10. ^ Conder, Marston and Cunningham, Gabe. Tight orientably-regular polytopes. arXiv preprint arXiv:1310.1417. 2013. 
  11. ^ Hemi-cuboctahedron. Regular Map database - map details. [2021-07-24]. (原始内容存档于2021-01-26). 

外部連結