Trong toán học, một hàm liên tục hay hàm số liên tục là một hàm số không có sự thay đổi đột ngột trong giá trị của nó, gọi là những điểm gián đoạn. Chính xác hơn, thay đổi rất ít đầu vào của hàm liên tục thì sự chênh lệch của đầu ra cũng nhỏ tùy ý. Một hàm số không liên tục còn gọi là hàm gián đoạn. Đến trước thế kỷ 19, các nhà toán học phần lớn sử dụng những khái niệm liên tục cảm tính, dẫn đến những nỗ lực chặt chẽ hóa nó như là định nghĩa epsilon–delta.
Dạng định nghĩa epsilon-delta được đề cập đầu tiên bởi Bernard Bolzano năm 1817. Định nghĩa liên tục ban đầu liên quan đến giới hạn được đưa ra bởi Augustin-Louis Cauchy. Cauchy định nghĩa liên tục của như sau: Một sự tăng vô cùng nhỏ của biến độc lập luôn luôn là một sự thay đổi tăng vô cùng nhỏ của . Cauchy định nghĩa trên một lượng vô cùng nhỏ của biến, định nghĩa của ông ta rất gần với định nghĩa của chúng ta sử dụng ngày nay.
Tính liên tục của hàm số là một khái niệm quan trọng trong tô pô học. Phần mở đầu của bài viết này tập trung vào trường hợp đặc biệt khi đầu vào và đầu ra của hàm số là những số thực. Một dạng mạnh hơn của tính liên tục là liên tục đều. Ngoài ra, bài viết này cũng có định nghĩa cho những trường hợp hàm số giữa hai không gian mêtric. Trong lý thuyết thứ tự, đặc biệt là lý thuyết miền, ta có khái niệm liên tục gọi là tính liên tục Scott.
Định nghĩa chính thức và phân biệt giữa liên tục điểm và liên tục đều được đưa ra đầu tiên bởi Bolzano vào năm 1830 nhưng điều đó không được công bố mãi đến năm 1930. Eduard Heine công bố lần đầu tiên định nghĩa liên tục đều năm 1872, nhưng dựa trên những ý tưởng từ bài giảng của Peter Gustav Lejeune Dirichlet năm 1854.
Một ví dụ đơn giản, hàm số H(t) thể hiện chiều cao của một cây đang mọc tại thời gian t có thể được coi là liên tục. Ngược lại, hàm số M(t) chỉ số tiền trong một tài khoản ngân hàng tại thời gian t là không liên tục, vì nó sẽ "nhảy" mỗi lần một số tiền được gửi vào hay rút ra.
Lịch sử
Dạng định nghĩa epsilon-delta được đề cập đầu tiên bởi Bernard Bolzano năm 1817. Định nghĩa liên tục ban đầu liên quan đến giới hạn được đưa ra bởi Augustin-Louis Cauchy. Cauchy định nghĩa liên tục của như sau: Một sự tăng vô cùng nhỏ của biến độc lập luôn luôn là một sự thay đổi tăng vô cùng nhỏ của . Cauchy định nghĩa trên một lượng vô cùng nhỏ của biến, định nghĩa của ông ta rất gần với định nghĩa của chúng ta sử dụng ngày nay.
Định nghĩa chính thức và phân biệt giữa liên tục điểm và liên tục đều được đưa ra đầu tiên bởi Bolzano vào năm 1830 nhưng điều đó không được công bố mãi đến năm 1930. Eduard Heine công bố lần đầu tiên định nghĩa liên tục đều năm 1872, nhưng dựa trên những ý tưởng từ bài giảng của Peter Gustav Lejeune Dirichlet năm 1854.
Hàm số thực
Định nghĩa
Một hàm số thực, ở đây nghĩa là hàm số từ tập số thực đến tập số thực, có thể được biểu diễn bằng đồ thị trong mặt phẳng tọa độ; một hàm số như thế là liên tục nếu, nói đại khái, đồ thị của nó là một đường duy nhất không bị đứt gãy chạy trên toàn tập số thực. Một định nghĩa chính xác hơn được đưa ở dưới.[1]
Định nghĩa chặt chẽ cho tính liên tục của hàm số thực thường sử dụng khái niệm giới hạn. Hàm số f theo biến x được gọi là liên tục tại điểmc trên trục số thực nếu giới hạn của f(x) khi x tiến tới c, bằng giá trị f(c); và hàm số được gọi là liên tục nếu nó liên tục tại mọi điểm. Một hàm số được gọi là gián đoạn tại một điểm khi nó không liên tục tại điểm đó. Những điểm này gọi là các điểm gián đoạn.
Có một số cách hiểu khác nhau cho tính liên tục của hàm số. Do đó, khi sử dụng khái niệm liên tục, cần phải cẩn thận coi ý nghĩa liên tục nào được dùng. Khi nói một hàm số là liên tục, người ta có thể mang một trong các ý nghĩa sau:
Hàm số liên tục tại mọi điểm trong tập xác định của nó. Theo nghĩa này, hàm số f(x) = tan(x) liên tục trên tập xác định là tất cả số thực x ≠ (2n+1)π/2, n số nguyên bất kỳ.
Tại giá trị biên của tập xác định, chỉ xét giới hạn một bên. Ví dụ, hàm số g(x) = √x, với tập xác định là các số thực không âm, chỉ có giới hạn bên phải tại x = 0. Trong trường hợp này chỉ cần giới hạn một bên của hàm số bằng giá trị của hàm số, tức g có thể coi là liên tục trên toàn bộ tập số thực không âm.
Hàm số liên tục tại mọi số thực. Theo nghĩa này, hai hàm số nêu trên không liên tục, còn các hàm đa thức, hàm sin, cosin, và hàm mũ đều liên tục.
Sử dụng ký hiệu toán học, có vài cách để định nghĩa hàm liên tục theo một trong ba cách hiểu nói trên.
Đặt f: D ⟶ R là hàm số định nghĩa trên một tập conD của tập số thựcR. Tập con D này là tập xác định của f. Một số khả năng cho D bao gồm:
(D là toàn bộ tập số thực), hoặc với các số thực a, b,
Trong trường hợp D là một khoảng mở, a và b không phải là giá trị biên của tập xác định, và các giá trị f(a) và f(b) không ảnh hưởng đến tính liên tục của f trên D.
Định nghĩa liên tục theo giới hạn của hàm
Hàm gọi là liên tục tại điểm trên miền xác định nếu giới hạn của khi tiến dần về tồn tại và bằng giá trị của . Ta viết:
hay chính là 3 điều kiện sau: 1 là xác định tại , 2 là giới hạn bên vế trái là tồn tại, thứ 3 là giá trị của giới hạn phải bằng .
Hàm là liên tục nếu liên tục tại mọi điểm trong miền xác định.
Định nghĩa theo giới hạn của dãy
Cho dãy bất kì trên miền xác định hội tụ về , thì tương ứng dãy hội tụ về
Định nghĩa liên tục theo epsilon–delta
Cho số thực bất kỳ , tồn tại số thực sao cho với mọi trong miền xác định của với , giá trị của thỏa
Liên tục của tại là với mọi , tồn tại sao cho với mọi
Ví dụ
Hàm
liên tục trên miền xác định
Phản ví dụ
Ví dụ về hàm không liên tục với , lấy với mọi , khi đó không tồn tại sao cho vì
Cho là liên tục, giả sử nằm giũa và . Khi đó tồn tại ít nhất một sao cho .
Ví dụ như một đứa trẻ từ khi 4 tuổi đến khi 8 tuổi, chiều cao tăng từ 1m đến 1.5m, khi đó sẽ có 1 thời điểm nào đó trong khoảng 4 tuổi đến 8 tuổi, đứa trẻ cao 1.2m
Định lý giá trị cực biên
Cho khoảng (khoảng đóng và bị chặn) và là liên tục, khi đó có giá trị lớn nhất và giá trị nhỏ nhất trên , hay tồn tại sao cho với mọi .
Định lý điểm cố định
Cho , liên tục, khi đó tồn tại ít nhất một sao cho .
Nghiên cứu về không gian Tô pô, ta có nhiều khái niệm khác nhau về quan hệ giữa các không gian tô pô với nhau và giữa các không gian con của chúng. Ta muốn xem xét hàm đưa một không gian tô pô vào không gian tô pô khác, Tính liên tục của là một trong những khái niệm cốt lõi của không gian tô pô, được mô tả trực quan tính sinh động trong không gian hình học.
Định nghĩa
Cho và là hai không gian tô pô. Ánh xạ là liên tục tại điểm trong nếu mọi tập mở trong chứa thì có tập mở của chứa sao cho chứa trong . Ta nói liên tục trên nếu nó liên tục tại mọi điểm trên .
Lân cận của điểm là tập con của chứa tập mở chứa . Lân cận không cần phải mở.
liên tục tại nếu mọi tập mở chứa thì tập là lân cận của .[6]
Định lý
Ánh xạ là liên tục nếu và chỉ nếu ảnh ngược của tập mở là tập mở. Hay liên tục khi và chỉ khi với mọi mở trong thì mở trong .
Chứng minh
() Giả sử rằng là liên tục. Cho là tập mở trong . Cho . Vì liên tục tại và là lân cận mở của thì có mở chứa sao cho chứa trong . Do đó là mở.
() Giả sử rằng ảnh ngược của mọi tập mở là tập mở. Cho , là lân cận mở của . Khi đó là tập mở chứa , và chứa trong . Vì thế liên tục tại .
Định nghĩa: Một biến đổi đồng luân giữa hai ánh xạ liên tục và từ không gian tô pô vào không gian tô pô được định nghĩa là ánh xạ từ tích của không gian với đoạn đơn vị vào sao cho với mỗi thuộc ta có và .
Nếu ta nghĩ tham số thứ hai của như là "thời gian", khi đó mô tả một biến đổi liên tục ánh xạ thành ánh xạ : tại thời điểm ta có ánh xạ và tại thời điểm ta có ánh xạ .
Đồng luân là một quan hệ tương đương trên tập các ánh xạ liên tục từ vào . Quan hệ đồng luân này tương thích với phép hợp thành của 2 ánh xạ theo nghĩa nếu là đồng luân và là đồng luân, khi đó hợp thành của chúng và : là đồng luân
Ví dụ
Ví dụ 1: Cho là ánh xạ biến
Ta thấy là tô pô mịn nhất sao cho liên tục.
Ví dụ 2: Mặt phẳng đồng phôi với nửa mặt phẳng và đồng phôi với đĩa tròn
Ví dụ 3: Một biến đổi đồng luân
Tham khảo
^Speck, Jared (2014). “Continuity and Discontinuity”(PDF). MIT Math. tr. 3. Bản gốc(PDF) lưu trữ ngày 6 tháng 10 năm 2016. Truy cập ngày 2 tháng 9 năm 2016. Example 5. The function 1/x is continuous on (0, ∞) and on (−∞, 0), i.e., for x > 0 and for x < 0, in other words, at every point in its domain. However, it is not a continuous function since its domain is not an interval. It has a single point of discontinuity, namely x = 0, and it has an infinite discontinuity there.
Miss World 1961Tanggal9 November 1961TempatLyceum Ballroom, London, Britania Raya Pembawa acaraMichael AspelPenyiaranBBCPeserta37DebutTaiwan, SurinameTidak tampilAustralia, Burma, Canada, Yordania, Kenya, Norwegia, Tahiti, TanganyikaTampil kembaliAustria, Ceylon, Selandia Baru, VenezuelaPemenangRosemarie Frankland Britania Rayalbs Miss World 1961, merupakan edisi ke-11 dari kontes kecantikan Miss World, diadakan pada 9 November 1961 di Lyceum Ballroom di London, Britania R...
American politician Johnny MautzMautz in 2019Member of the Maryland Senatefrom the 37th districtIncumbentAssumed office January 11, 2023Preceded byAdelaide EckardtMember of the Maryland House of Delegatesfrom the 37B districtIn officeJanuary 14, 2015 – January 11, 2023Preceded byAdelaide EckardtJeannie HaddawaySucceeded byTom Hutchinson Personal detailsBornJohn Frederick Mautz IV (1970-09-19) September 19, 1970 (age 53)Fort Devens, Massachusetts, U.S.SpouseRebe...
Berikut ini adalah daftar kota-kota di Britania Raya pada tahun 2012 (Inggris: city). Kolom yang berjudul Katedral menunjukkan katedral keuskupan yang ditetapkan sebagai syarat untuk pemberian status kota sebelum tahun 1888, misalnya katedral Gereja Inggris (termasuk katedral yang saat ini menjadi bagian dari Gereja di Wales) atau katedral pra-Reformasi di Gereja Skotlandia. Kota-kota tertentu juga memiliki katedral Katolik Roma, namun tidak didaftarkan. Sejak tahun 1888, kehadiran katedr...
Stadion Gelanggang Mahasiswa Soemantri BrodjonegoroStadion Soemantri Brodjonegoro LokasiLokasiKuningan, Jakarta Selatan, DKI Jakarta, IndonesiaData teknisKapasitas5.000 [1]Sunting kotak info • L • BBantuan penggunaan templat ini Stadion Gelanggang Mahasiswa Soemantri Brodjonegoro adalah stadion multifungsi yang terletak di Kuningan, Jakarta Selatan, Jakarta Selatan. Stadion ini utamanya digunakan untuk menggelar sepak bola. Pada musim 2009-10, stadion ini digunakan untuk...
U.S. states, by date of repeal of anti-miscegenation laws: No laws passed Repealed before 1888 Repealed between 1948 and 1967 Overturned June 12, 1967 Interracial marriage has been legal throughout the United States since at least the 1967 U.S. Supreme Court (Warren Court) decision Loving v. Virginia (1967) that held that anti-miscegenation laws were unconstitutional via the 14th Amendment adopted in 1868.[1][2] Chief Justice Ea...
Motor racing teams sponsored by Martini & Rossi For the constructor of lower formulae single-seaters, see Automobiles Martini. '71 Le Mans winning #22 Martini-Porsche 917K of Marko/Lennep The #21 Martini Langheck-917 did not finish Martini Racing is the name under which various motor racing teams race when sponsored by the Italian company Martini & Rossi, a distillery that produces Martini vermouth in Turin. Martini's sponsorship program began in 1958 as Martini International Club, fo...
American sportscaster (born 1955) For other persons named Pat Hughes, see Pat Hughes (disambiguation). This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Pat Hughes sportscaster – news · newspapers · book...
В Википедии есть статьи о других людях с такой фамилией, см. Духонин. Николай Николаевич Духонин Дата рождения 1 (13) декабря 1876 Место рождения имение Ольша, Смоленский уезд, Смоленская губерния Дата смерти 20 ноября (3 декабря) 1917 (40 лет) Место смерти Могилёв, Российская �...
For other uses, see Doxa (disambiguation). Greek word meaning common belief or popular opinion Part of a series onRhetoric History Ancient Greece Asianism Atticism Attic orators Calliope Sophists Ancient India Ancient Rome The age of Cicero Second Sophistic Middle Ages Byzantine rhetoric Trivium Renaissance Studia humanitatis Modern period Concepts Captatio benevolentiae Chironomia Decorum Delectare Docere Device Eloquence Eloquentia perfecta Eunoia Enthymeme Facilitas Fallacy Informal Figure...
هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...
Соціальна мережа Досліджується в аналіз соціальних мереж Ідентифікатор WordLift data.thenextweb.com/tnw/entity/social_networks Соціальна мережа у Вікісховищі Наука про мережі Теорія Граф Складні мережі Світ тісний Безмасштабна мережа Перколяція Структура спільноти Еволюція[en] Керованіст�...
Bahasa Mi’kmaq Míkmawísimk Dituturkan diKanada, Amerika SerikatWilayahNova Scotia, New Brunswick, Pulau Pangeran Edward, Semenanjung Gaspé, Pulau Newfoundland, Maine utara, Boston, MassachusettsEtnis14.200 Mi'kmaq (1998)[1]Penutur8.300 (2010 & 2011)[1] Rincian data penutur Jumlah penutur beserta (jika ada) metode pengambilan, jenis, tanggal, dan tempat.[2] 8.270 (2011) Rumpun bahasaAlgic AlgonquiaAlgonquia TimurMi’kmaq Status resmiDiakui sebagaibah...
British peer The Earl of Gosford in 1897, dressed as Robert de la Marck. Archibald Brabazon Sparrow Acheson, 4th Earl of Gosford, KP (19 August 1841[1] – 11 April 1922) was a British peer. The son of Archibald Acheson, 3rd Earl of Gosford, he was born at Worlingham Hall, Suffolk,[2] in 1841, and educated at Harrow School; and succeeded to the earldom upon the death of his father in 1864.[3] He was Lord of the Bedchamber to Edward VII, Prince of Wales between 1886 and...
Electricity from wind in one U.S. state Wind potential in Delaware The potential of on-shore wind power in Delaware is minimal, having a potential of generating at most 22 GWh/year.[1] Delaware's principal wind potential is from offshore wind. A 2012 assessment estimates that 15,038 MW of offshore wind turbines could generate 60,654 GWh/year.[1] Delaware generated 11,522 GWh from all generating sources in 2011.[2] 2 MW of large scale wind capacity has been constructed ...
مراكز لاعبي كرة السلة في المنطقة الهجومية: 1. لاعب هجوم خلفي 2. مدافع مسدد الهدف 3. لاعب هجوم صغير الجسم 4. لاعب الهجوم قوي الجسم 5. لاعب الوسط لاعب هجوم قوي الجسم (بالإنجليزية: Power forward) هو أحد مراكز رياضة كرة السلة.[1][2][3] قائمة أهم لاعبي المركز رجال تشارلز باركلي (لا�...
中国地質大学 各種表記繁体字: 中国地質大学簡体字: 中国地质大学拼音: Zhōngguó Dìzhì Dàxué発音: ちゅうごくちしつだいがく英文: China University of Geosciencesテンプレートを表示 中国地質大学(ピンイン: Zhōngguó Dìzhì Dàxué、英名:China University of Geosciences)は、中華人民共和国北京市及び武漢市(湖北省)にある中国教育部に直属する大学である。また、地質・資源�...