Побудова за допомогою циркуля та лінійки або класична побудова, це побудова довжин, кутів, та інших геометричних фігур з використанням лише ідеалізованоїлінійки та циркуля.
Ідеалізована лінійка, відома як прямий край[en], вважається нескінченною, не має міток і має лише один край. Вважається, що циркуль відривається від креслення, тому не може бути безпосередньо використаний для перенесення відстаней. Це несуттєве обмеження, оскільки використовуючи процедуру з великою кількістю кроків, відстань може бути знайдена навіть за умови, що циркуль піднімають над кресленням; див. теорему еквівалентності циркулів[en]. Формально кажучи, єдиними дозволеними конструкціями є такі, що надані трьома першими евклідовимипостулатами.
Відомо, що будь-яка побудова з використанням лінійки та циркуля може бути виконана лише циркулем.
Математики стародавньої Греції вперше запровадили побудови за допомогою циркуля та лінійки, та ряд проблем у геометрії Евкліда накладають це обмеження. Стародавні греки розвинули багато побудов, хоча у деяких випадках не мали на це змоги. Гаусс продемонстрував, що деякі многокутники можна побудувати, але не всі. Принципова неможливість побудови, щодо деяких найвідоміших проблем, були доведені П'єром Ванцелем в 1837 році, за допомогою математичної теорії полів.
Не зважаючи на наявні докази неможливості побудови, знаходяться люди, що завзято намагаються вирішити ці питання.[1] Більшість з цих питань легко вирішити за умови, що інші геометричні перетворення допускаються: наприклад, подвоєння куба можна зробити за допомогою геометричних побудов, але це не можливо, якщо використовувати лише лінійку і циркуль.
З точки зору алгебри, довжина може бути побудована тоді й лише тоді, коли є числом, що можна побудувати, та кут можна побудувати лише за умови того, що його косинус — це число, яке можна побудувати. Число може бути побудоване тоді й лише тоді, якщо його можна записати з використанням чотирьох базових арифметичних операції та лише квадратного кореня, але не кореня іншого степеня.
Циркуль та лінійка
«Циркуль» та «лінійка», які використовуються для побудови — це ідеалізація реальних лінійки та циркуля. Тому припускається, що:
Циркуль може бути розгорнутим на довільну ширину, але (на відміну від деяких існуючих циркулів) на ньому нема розмітки. Кола можуть бути накреслені лише за двома заданими точками: центром та точкою на колі. Циркуль може (не обов'язково) зникати, коли він не малює коло.
Лінійка нескінченно довга, але не має відміток, бо у неї є лише прямий край, на відміну від звичайних лінійок. Вона може бути використана лише для креслення відрізків між двома точками або для подовження наявних відрізків.
Сучасні циркулі зазвичай не збиваються, і деякі сучасні побудови використовують цю особливість. Здавалося б, що сучасний циркуль — це «більш потужний» інструмент аніж стародавні циркулі, що збиваються. Однак, за 2 Теоремою з 1 Книги Початків Евкліда, ефективність при використанні циркуля, що збивається, не втрачається.
Хоча теорема правдива, її докази мають довгу, та мінливу історію.[2]
Кожна побудова повинна бути точною. Наближене рішення (або використання деяких інструментів виміру, таких як поділки на лінійці) не враховується за розв'язок.
Кожна побудова має мати завершення. Тобто вона повинна складатись зі скінченної кількості кроків, і не може бути межею послідовних наближень.
Побудови за допомогою циркуля та лінійки скоріше виникли як салонна гра[en], а не справжня, практична задача; але метою наведених обмежень є гарантія того, що така побудова може бути виконанацілковито правильно, і це важливо як для виконання креслень (при проектуванні у програмах САПР та традиційних креслень олівцем, циркулем та лінійкою на папері) так і науці мір та вагів, у яких точна передача з об'єктів або матеріалів дуже важлива. Однією з головних цілей грецької математики було знаходження точної побудови для різних довжин; наприклад, знаходження сторони п'ятикутника вписаного у коло. Також, серед побудов, які греки не могли віднайти побудову, найбільш відомі наступні три випадки:
Квадратура круга: Креслення квадрата з тією ж площею, що і дане коло.
Подвоєння куба: Креслення куба з об'ємом, який буде вдвічі більший за об'єм даного куба.
Трисекція кута: Поділ даного кута на три менші кути однакової градусної міри.
Протягом 2000 років люди намагались віднайти побудову за наведених умов, але їх зусилля не принесли потрібного результату. Наразі доведена неможливість розв'язання цих трьох проблем за математичними правилами (кути з деякими градусними мірами можуть бути поділені на три рівні частині, але не будь-який довільний кут).
Історія
Математики стародавньої Греції вперше використали побудову за допомогою лінійки та циркуля, та відкрили як будувати суму, різницю, добуток, відношення та квадратний корінь даних довжин.[3]:p. 1 Також вони могли конструювати половину даного кута, квадрат чиєї площі вдвічі більший за інший квадрат, квадрат, що має площу таку ж як даний багатокутник, та правильний багатокутник із трьома, чотирма або п'ятьма сторонами[3]:p. xi (або такий, що має удвічі більше сторін ніж даний багатокутник[3]:pp. 49–50). Але вони не могли побудувати третину кута, за виключенням окремих випадків, або квадрат із такою ж площею, що і дане коло, або правильний багатокутник з іншою кількістю сторін.[3]:p. xi Не могли вони, також, побудувати грань куба, чий об'єм був удвічі більший за об'єм куба з даною гранню.[3]:p. 29
Гіппократ та Менехм показали, що поверхня куба може бути подвоєна шляхом знаходження перетинів гіпербол та парабол, але вони не можуть бути побудовані циркулем та лінійкою.[3]:p. 30 У п'ятому столітті до нашої ери, Гіппократ використовував криву що він називав квадратриса як для розділення на три загального кута та квадратури круга, а Нікомед у другому столітті до нашої ери показав, як використовувати конхоїду для поділу довільного кута на три;[3]:p. 37 але ці методи також не можуть бути використані лише з циркулем та лінійкою.
Не було ніякого прогресу у вирішенні цих питань протягом двох тисячоліть, аж до 1796 року, поки Гаус показав, як побудувати правильний багатокутник з 17 сторонами; через п'ять років він навів достатні умови побудови правильного багатокутника з n сторонами.[3]:pp. 51 ff.
У 1837 П'єр Ванцель опублікував доказ неможливості поділу на три частини довільного кута або подвоєння об'єму куба, Це доведення засноване на неможливості побудови кубічних коренів від довжин.[4] Ще він показав, що достатні умови Гауса для побудови правильних багатокутників також є і необхідними.
Потім у 1882 році Ліндеманн показав, що це трансцендентне число, а отже не можливо побудувати за допомогою лінійки та циркуля квадрат із такою ж площею, що і дане коло.[3]:p. 47
Базові побудови
Усі побудови за допомогою лінійки та циркуля складаються з повторюваних додавань п'яти базових конструкцій, що використовують точки, лінії та кола, які вже були побудовані раніше. А саме:
Побудова прямої, що проходить через дві задані точки
Побудова кола з заданим центром, що проходить через задану точку
Побудова точки, що є точкою перетину двох заданих, не паралельних ліній.
Побудова однієї чи двох точок перетину кола з прямою лінією (якщо вони перетинаються)
Побудова однієї чи двох точок на перетині двох кіл (якщо вони перетинаються).
Наприклад, для двох заданих різних точок ми можемо побудувати пряму або будь-яке з двох кіл (послідовно, використовуючи кожну точку як центр, а іншу точку, як точку на колі). Якщо накреслити обидва кола, то дві нові точки будуть утворені на перетині кіл. Креслення ліній між двома початковими точками та однією з цих нових точок завершує побудову рівностороннього трикутнику.
Таким чином, у будь-якій геометричній задачі на побудову задано початковий набір символів (точок та ліній), алгоритм дій, та певні результати. З цієї точки зору, геометрія еквівалентна до аксіоматичної алгебри, з точністю до заміни елементів на символи. Ймовірно, Гаус перший зрозумів це, та використав це для доказу неможливості деяких побудов; і лише через значний проміжок часу Гільберт винайшов повну систему геометричних аксіом.
Побудови за допомогою циркуля та лінійки що часто застосовуються
Існують такі побудови за допомогою лінійки та циркуля, що застосовуються найчастіше:
Побудова прямої, що проходить через точку та дотична до кола
Побудова кола, яке проходить через три не колінеарні точки
Знаходження середини відрізка
Для прикладу розглянемо наступну задачу.
Задача. За допомогою циркуля та лінійки поділити даний відрізок AB на дві рівні частини. Один з розв'язків показано на малюнку. Розв'язок складається з наступних кроків:
Циркулем будуємо коло з центром в точці A радіусу AB.
Будуємо коло з центром в точці B радіусу AB.
Знаходимо точки перетину P та Q двох побудованих кіл.
Лінійкою проводимо відрізок, що об'єднує точки P та Q.
Знаходимо точку перетину AB та PQ. Це — шукана середина відрізка AB.
Точки і довжини, які можливо побудувати
Формальне доведення
Існують багато різних методів доказу неможливості чого-небудь. Якомога ретельніше доведення потрібне для визначення межі можливого, та щоб показати те, що для вирішення проблеми ми повинні переступити цю межу. Більша частина того, що можливо побудувати визначається теоремою про пропорційні відрізки.
Ми можемо асоціювати алгебру із нашою геометрією використовуючи Декартову систему координат, утворену двома лініями, та представляють точки площині як вектори. Остаточно, ми можемо записати ці вектори як комплексні числа.
Використовуючи рівняння для ліній та кіл, можна показати, що точки їх перетину лежать у квадратичному розширенні[en] найменшого поля F, що містить дві точки на лінії, центр кола та радіус кола. Тобто вони утворюють числа вигляду , де x, y, та k лежать у F.
Оскільки поле точок, що можна побудувати замкнене відносно квадратних коренів, воно містить усі точки, які можна отримати скінченною послідовністю квадратичних розширень поля комплексних точок їх раціональними коефіцієнтами. Згідно з попереднім абзацом, можна показати, що будь-яка точка може бути отримана такою послідовністю розширень. Як наслідок цього, можна сказати, що мінімальний поліном для точки, що доступна до побудови (і через це будь-яка довжина, яку можна побудувати), має степінь 2. Зокрема будь-яка конструктивна точка (або довжина) це алгебраїчне число, однак не кожне алгебраїчне число є конструктивним (так зв'язок між конструктивною довжиною та алгебраїчним числом не є бієктивним); наприклад, алгебраїчне, але не конструктивне число.
Конструктивні кути
Існує бієктивний зв'язок між кутами, які можна побудувати та точками, що конструктивні на будь-якому конструктивному колі. Конструктивні кути утворюють абелеву групу з модулем додавання (що відповідає множенню точок на одиничному колі, як комплексних чисел). Кути, що можна побудувати — це саме ті кути, тангенс яких (або так-само, синус чи косинус) є конструктивним як число. Наприклад, правильний сімнадцятикутник є конструктивним, бо
Група конструктивних кутів замкнена відносно операції ділення кутів навпіл (що відповідає взяттю квадратного кореня з комплексних чисел). Єдиними кутами фінітного порядку що можуть бути побудованими починаючи з двох точок є ті, чий порядок є або степенем двійки, або добутком степені двійки та множини різних чисел Ферма. Слід зауважити, що існує нескінченна щільна множина конструктивних кутів.
Побудова за допомогою циркуля та лінійки як комплексна арифметика
Якщо брати будь-яку таку інтерпретацію множини точок у ролі комплексних чисел, точки, які можна побудувати за допомогою лінійки та циркуля, є в точності елементами найменшого поля, що містить початкову множину точок та замкнене відносно операцій над спряження та видобутку квадратного кореня (щоб уникнути двозначності, варто вважати, що квадратний корінь береться з комплексним аргументом[en] меншим за ). Елементи цього поля це в точності ті, що можуть бути виражені як формула у початкових точках, яка використовує лише операції додавання, віднімання, множення, ділення, знаходження спряженого числа, та квадратний корінь, для яких легко побачити, що вони є зліченною підмножиною площини. Кожна з шести операцій відповідає простим побудовам за допомогою циркуля та лінійки. З такого твердження є очевидною побудова відповідної точки комбінуванням конструкцій кожної з арифметичних операцій. Більш ефективні побудови окремої множини точок відповідає скороченню у таких обчисленнях.
Так само (та без необхідності довільного вибору двох точок) ми можемо сказати, що за умови довільного вибору орієнтації, множина точок визначає множину комплексних коефіцієнтів відношенням різності між будь-якими двома парами точок. Множина коефіцієнтів конструктивна при використанні циркуля та лінійки, з такого набору коефіцієнтів, найменше поле містить початкові коефіцієнти та замкнене щодо знаходження спряженого числа та взяття квадратного кореня.
Наприклад, дійсна частина, уявна частина та модуль точки або коефіцієнта z (якщо брати одну з двох точок, що розглядались вище) конструктивні оскільки вони можуть бути записані як
Подвоєння куба та трисекція кута (за виключенням окремих кутів φ, таких, що φ/ є раціональне число зі знаменником, що не ділиться на 3) потребує коефіцієнтів, що є розв'язками кубічних рівнянь, у той час, коли квадратура круга потребує трансцендентного коефіцієнта. Жодна з цих операцій не належить полям, описаним вище, отже побудови за допомогою лінійки та циркуля для них не існує.
Неможливі побудови
Стародавні греки вважали, що проблеми побудови, які вони не могли вирішити були просто важкими для розв'язання, але не такими, що їх неможливо побудувати.[6] З допомогою сучасних методів була доведена логічна неможливість виконання цих побудов за допомогою лінійки та циркуля. (Самі проблеми, однак, мають рішення, і греки знали як їх розв'язати, без обмеження у використанні лише лінійки та циркуля.)
Найвідоміша з цих проблем — квадратура круга, включає побудову квадрата з такою ж площею, як і даний круг з використанням лише лінійки та циркуля.
Неможливість квадратури круга була доведена завдяки тому, що вона включає в собі побудову трансцендентного числа, а саме числа . Тільки окремі алгебраїчні числа можуть бути побудовані лише лінійкою та циркулем, а саме ті, що побудовані з цілих чисел та скінченної послідовності операцій додавання, віднімання, множення, ділення, та взяття квадратного кореня. Через це фраза «квадратура круга» часто використовується у сенсі «робити щось неможливе».
Без обмеження на умову використання лише циркуля і лінійки, проблема легко вирішується за допомогою найрізноманітніших геометричних і алгебраїчних засобів, і багато разів була вирішена в античності.[7]
За допомогою трикутника Кеплера можна отримати дуже близьке наближення до квадратури круга.
Подвоєння куба — це побудова, за умови використання лише лінійки та циркуля, грані куба, об'єм якого удвічі більший за об'єм куба з даною гранню. Це не можливо, оскільки корінь кубічний від двох, хоча б алгебраїчно, не може бути обчислений з цілих чисел за допомогою операцій додавання, віднімання, множення, ділення, та виділення квадратного кореня. З цього випливає, що його мінімальний многочлен з раціональними коефіцієнтами має степінь 3. Ця побудова можлива, якщо використовувати лінійку з двома відмітками на ній та на циркулі.
Трисекція кута — це побудова, з використанням тільки лінійки та циркуля, кута, що є третиною даного довільного кута. Це не можливо у загальному випадку. Наприклад, хоча кут радіан (60°) не може бути розділений на три рівних кути, кут радіан (72° = 360°/5) може бути поділений на три рівні частини. Головна проблемою трисекції може бути вирішена дуже легко, коли на лінійці є дві відмітки, що дають змогу використання невсіса.
Деякі правильні багатокутники такі як п'ятикутник легко будуються лінійкою та циркулем; інші — ні. Це наводить на питання: чи можливо побудувати усі правильні багатокутники лінійкою та циркулем?
У 1796 році Карл Фрідріх Гаус продемонстрував, що правильний 17 сторонній багатокутник може бути побудованим, та через 5 років показав, що правильний n-кутник може бути побудований лінійкою та циркулем, якщо непарні прості множники числа n будуть різними числами Ферма. Гаус висловив припущення, що ця умова буде не тільки достатньою, а й необхідною, але не зміг це довести, що було пізніше доведено П'єром Ванцелем у 1837 році.[8]
Перші декілька конструктивних правильних многокутників мають таку кількість сторін:
Відомо, що існує нескінченно багато конструктивних правильних багатокутників з парною кількістю сторін (тому, що раз можливо побудувати правильний n-кутник, то можна побудувати і правильний 2n-кутник, а отже і правильні 4-кутник, 8-кутник, тощо). Однак, відомо тільки 31 правильний n-кутник із непарною кількістю сторін, які можна побудувати.
Побудова трикутника по трьох даних характеристичних точках або довжинах
У трикутника є шістнадцять ключових точок: вершини, середини його сторін, основи висот, основи бісектрис, а також його центр описаного кола, барицентр, ортоцентр, та центр вписаного кола. Вони можуть бути використані за потреби, для вирішення 139 різних нетривіальних задач побудови трикутника по трьом точкам.[9] Серед цих проблем три потребують точку, яка може бути однозначно побудована з інших двох; 23 можуть бути не однозначно побудовані (насправді для нескінченної кількості розв'язків) але лише якщо на розташування точок накладено обмеження; у 74 ця проблема конструктивна для загального випадку; та у 39 шуканий трикутник існує, але його не можна побудувати.
Дванадцять ключових довжин трикутника: довжини сторін, висот, бісектрис та медіан. Разом з трьома кутами виникає 95 різних комбінацій, з яких 63 можна побудувати, 30 неможливо і 2 невизначені.[10]:pp. 201–203
Відстань до еліпса
Відрізок з будь-якої точки на площині до найближчої точки на колі можна побудувати, але відрізок з будь-якої точки на площині до найближчої точки на еліпсі позитивного ексцентриситету взагалі не може бути побудований.[11]
Варіації та узагальнення
Стародавні греки класифікували конструкції на три основні категорії, в залежності від складності необхідних інструментів для їх вирішення. Якщо для побудови потрібні лише циркуль і лінійка, вона називалася плоскою; якщо потрібні конічні перетини (крім кола), то її називали міцною конструкцією; третя категорія включає всі конструкції, які не потрапили до жодної з двох категорій.[12] Ця класифікація конструкцій красива з нашої сучасної алгебраїчної точки зору. Комплексне число, яке може бути виражено з використанням тільки операцій над полем і квадратних коренів (які описані вище) мають плоску конструкцію. Комплексне число, яке містить також видобуток кубічних коренів відповідає міцній конструкції.
Міцні конструкції
Точка має міцну конструкцію, якщо вона може бути побудована з використанням лінійки, циркуля, і (можливо, гіпотетично) конічного інструменту для малювання, який може намалювати будь-який конічний малюнок з уже побудованим фокусом, директрисою та ексцентриситетом. Той же набір точок часто може бути побудований з використанням меншого набору інструментів. Наприклад, використовуючи циркуль, лінійку, і листок паперу, на якому ми маємо параболу разом з точками (0,0) і (1,0), можна побудувати будь-яке комплексне число, яке має міцну конструкцію, Крім того, інструмент, який може намалювати будь-який еліпс з уже побудованим фокусом і головною віссю (мається на увазі, що дві шпильки й шматок мотузки) є настільки ж потужними.[13]
Стародавні греки знали, що подвоєння куба і трисекція довільного кута були міцними конструкціями. Архімед дав міцну конструкцію 7-кутника. Квадратура кола не має міцної конструкцію.
Регулярний -кутник має міцну конструкцію, тоді і тільки тоді, коли , де є добутком різних простих чисел Пірпонта[en] (прості числа, які мають вигляд ). Множиною таких представлена послідовністю
Подібно до питання з простими числами Ферма, залишається відкритим питання про те, чи існує нескінченно багато простих чисел Пірпонта.
Побудови за допомогою лише циркуля
За теоремою Мора — Маскероні за допомогою одного циркуля можна побудувати будь-яку фігуру, яку можна побудувати циркулем та лінійкою. При цьому пряма вважається побудованою, якщо на ній задано дві точки. Цілком можливо (відповідно до теореми Мора-Маскероні), щоб побудувати щось тільки з циркулем, за умови, що наведені дані, які повинні бути знайдені складаються з двох точок (а не ліній або кіл). Слід зазначити, що істинність цієї теореми залежить від істинності аксіоми Архімеда[14], яка не є першого порядку в природі. Неможливо взяти квадратний корінь тільки з лінійкою, так що деякі речі, які не можуть бути побудовані за допомогою лінійки можна побудувати за допомогою циркуля; але (по теоремі Понселе - Штейнера[en]) з урахуванням одного кола і його центра, то вони можуть бути побудовані.
Побудови за допомогою лише лінійки
Легко помітити, що за допомогою однієї лінійки можна реалізувати тільки проективно-інваріантні побудови. Зокрема, неможливо навіть розділити відрізок на дві рівні частини або знайти центр намальованого кола. Але за наявності на площині заздалегідь проведеного кола з позначеним центром за допомогою лінійки можна провести ті ж побудови, що і циркулем та лінійкою (теорема Понселе - Штейнера[en]), 1833.
Математична теорія оригамі набагато потужніша ніж побудови циркулем та лінійкою. Складки, які задовільняють правила Худзити, можна побудувати з точно тим же набором точок, як міцну конструкцію з використанням циркуля, лінійки та конічного перетину. Тому, оригамі можна використати для розв'язку кубічних рівнянь (а з ними, і рівнянь четвертого степеня), що дозволяє вирішити дві з трьох класичних задач.[15]
Лінійка з насічками
Архімед, Нікомед і Аполлоній описали побудови з використанням маркування лінійки. Це дозволило їм, наприклад, взяти відрізок, дві лінії (або кола), а також точку; а потім провести лінію, яка проходить через задану точку та перетинає обидві лінії, таким чином, що відстань між точками перетину дорівнює даному відрізку. Це греки називали neusis («схильність», «тенденція» або «межує»), так як нова лінія прагне до точки. У цій розширеній схемі, ми можемо ділити на три рівні частини довільний кут (див. трисекція Архімеда) або видобути довільний кубічний корінь (методом Нікомеда). Отже, будь-яка відстань, відношення якої до заданої відстані є рішенням кубічного або рівняння четвертого степеня, можна побудувати. Правильні багатокутники з міцними конструкціями, наприклад, семикутник, конструктивні; і Джон Х. Конвей і Річард К. Гай описали побудову деяких з них.[16]
Побудова невсіс є більш потужною, ніж конічний інструмент для малювання, з її допомогою можна побудувати комплексні числа, які не мають міцних конструкцій. Насправді, за допомогою цього інструменту можна вирішити деякі рівняння високого степеня, які не можна розв'язати за допомогою радикалів.[17] Відомо, що не можна розв'язати незвідний поліном з простою степеню, яка більше або дорівнює 7, з використанням невсіс побудови. Отже, не представляється можливим побудувати правильний 23-кутник або 29-кутник за допомогою цього інструменту. Бенджамін і Снайдер довели, що можна побудувати регулярний 11-кутник, але не надали способу побудови.[18] Наразі залишається відкритим питання, щодо можливості побудови 25-ти та 31-кутника за допомогою цього інструмента.
Обчислення двійкових цифр
У 1998 році Симон Плюффе[en] дав алгоритм для циркуля і лінійки, який може використовуватися для обчислення двійкових символів певних чисел.[19] Алгоритм включає в себе повторне подвоєння кута і стає фізично непрактичним після обчислення близько 20 двійкових символів.
Список систем інтерактивної геометрії[en] дозволяє користувачу будувати за допомогою циркуля та прямої лінії, а також маніпулювати побудовою, більшість з них демонструють побудови циркулем та лінійкою
Underwood Dudley[en] — математик, чиєю працею був збір невірних доведень за допомогою лінійки та циркуля.
О. М. Воронець. Геометрія циркуля, [Архівовано 6 грудня 2007 у Wayback Machine.] Популярна бібліотека з математики під загальною редакцією Л. О. Люстерника, М.- Л., ОНТІ, 1934 — 40 с.
Math Tricks Help You Design Shop Projects: master a simple compass and you're a designer; convert your router into one with a trammel and away you go, Popular Science, May 1971, p104,106,108, Scanned article via Google Books: https://books.google.com/books?id=ngAAAAAAMBAJ&pg=PA104
Halaman ini berisi artikel tentang perusahaan komunikasi Telus Communications Inc. Untuk layanan kesehatan Telus, lihat Telus Health. Untuk telepon/seluler, lihat Telus Mobility. Untuk Telus International, lihat Telus International. Untuk perusahaan induk, lihat Telus Corporation. Untuk sejarah Telus, lihat Sejarah Telus. Telus Communications Inc.Kantor pusat Telus sebelumnya di BurnabyJenisPublikKode emitenTSX: T (voting)NYSE: TU komponen S&P/TSX 60IndustriTelekomunikasiKonsultan TI...
Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...
Railway line in Kyushu, Japan This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Hisatsu Line – news · newspapers · books · scholar · JSTOR (May 2009) (Learn how and when to remove this template message) Hisatsu LineA train (KiHa 31 series) on the Kuma River bridge in 2007OverviewNative name肥薩線StatusIn op...
Passenger train station in Orlando, Florida Orlando station redirects here. For the Brightline Orlando station, see Orlando International Airport Intermodal Terminal. For the old Orlando depot, see Church Street Station. Orlando, FLFront entrance to the 1926-built Orlando station. Originally used by the Atlantic Coast Line Railroad, now by Amtrak.General informationLocation1400 Sligh BoulevardOrlando, FloridaUnited StatesCoordinates28°31′33″N 81°22′53″W / 28.52590°N...
Naskah Tanjung Tanah dibersihkan secara simbolis dalam acara kenduri sko di Tanjung Tanah pada 13 Mei 2022 Naskah Tanjung Tanah adalah kitab undang-undang yang dikeluarkan oleh kerajaan Melayu pada abad ke-14. Naskah ini merupakan naskah Melayu yang tertua, dan juga satu-satunya yang tertulis dalam aksara Sumatera Kuno yang juga disebut sebagai aksara Malayu. Selain bahasa Melayu, naskah ini juga menggunakan bahasa Sanskerta.[1] Penemuan Naskah ini ditemukan di Tanjung Tanah di Mendap...
Pour les articles homonymes, voir Fabry. Pierre-Marc de FabryFonctionDéputé françaisTitre de noblesseBaron de l'Empire (d)BiographieNaissance 19 octobre 1777BrignolesDécès 5 juin 1824 (à 46 ans)MarseilleNationalité françaiseActivité Homme politiquemodifier - modifier le code - modifier Wikidata Pierre Marc Antoine Bruno de Fabry est un homme politique français né le 19 octobre 1777 à Brignoles (Var) et décédé le 5 juin 1824 à Marseille (Bouches-du-Rhône). Baron d'Empire...
Norwegian coal mining company Store Norske Spitsbergen Kulkompani ASCompany typeState ownedIndustryMiningPredecessorArctic Coal CompanyFounded1916HeadquartersLongyearbyen, Svalbard, NorwayKey peoplePer Andersson (CEO)ProductsBituminous coalRevenue NOK 1,200 millionNet income NOK 350 million (2009)OwnerNorwegian Ministry of Trade and IndustryNumber of employees340 (2010)Websitewww.snsk.no The headquarters in central Longyearbyen Store Norske Spitsbergen Kulkompani (SNSK), or simply S...
Danish politician (born 1969) Annette LindMember of the FolketingIncumbentAssumed office 15 September 2011ConstituencyWest Jutland Personal detailsBorn (1969-06-02) 2 June 1969 (age 54)Spøttrup, DenmarkPolitical partySocial Democrats Annette Harbo Lind (born 2 June 1969 in Spøttrup) is a Danish politician, who is a member of the Folketing for the Social Democrats. She was elected at the 2011 Danish general election. She was a member of the municipal council of Holstebro Municipalit...
Australian rugby league footballer Kai O'DonnellPersonal informationBorn (1999-02-21) 21 February 1999 (age 25)Brisbane, Queensland, AustraliaHeight181 cm (5 ft 11 in)Weight98 kg (15 st 6 lb)Playing informationPositionSecond-row, Lock Club Years Team Pld T G FG P 2020 Canberra Raiders 4 1 0 0 28 2022– Leigh Leopards 43 16 0 0 64 Total 47 17 0 0 92 Source: [1]As of 5 January 2023 Kai O'Donnell (born 21 February 1999) is an Australian professiona...
American CurlEsemplare adulto di American Curl Longhair, colore blue tabbyInformazioni genericheLuogo origine California Data origine1981 StandardCFAstandard FIFéstandard TICAstandard WCFstandard Altrostandard LOOF Tipo morfologicoTagliamedia Strutturamediolinea, semi-foreign Manuale Il gatto American Curl è una razza originaria degli Stati Uniti. Prende il nome dalla vistosa caratteristica delle orecchie a forma di ricciolo. Indice 1 Storia 2 Aspetto 3 Salute 4 Nella cultura di massa ...
Dewan Perwakilan Rakyat Daerah Kabupaten KarangasemDewan Perwakilan RakyatKabupaten Karangasem2019-2024JenisJenisUnikameral Jangka waktu5 tahunSejarahSesi baru dimulai15 Agustus 2019PimpinanKetuaI Wayan Suastika (PDI-P) sejak 11 Februari 2021 Wakil Ketua II Nengah Sumardi (Golkar) sejak 11 September 2019 Wakil Ketua III Made Agus Kertiana (NasDem) sejak 11 September 2019 Wakil Ketua IIII Wayan Parka (Gerindra) sejak 11 September 2019 KomposisiAnggota45Partai & kursi &...
This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: Needs more references, formatting and grammar improvements. Please help improve this article if you can. (October 2023) (Learn how and when to remove this message)Part of a series on theCulture of Korea Society History People Diaspora Language Names of Korea Religion Arts and literature Architecture Art Pottery Painting Dance Film North South Literature North South Poetry Manhwa Webtoon Media Tel...
Komando Distrik Militer 1807/Sorong SelatanLambang Korem 181/Praja Vira TamaDibentuk2 Agustus 2020Negara IndonesiaAliansiKorem 181/PVTCabangTNI Angkatan DaratTipe unitKodimPeranSatuan TeritorialBagian dariKodam XVIII/KSRMakodimSorong Selatan, Papua Barat DayaPelindungTentara Nasional IndonesiaMotoMkhafuk MananagoBaret H I J A U MaskotKakatua Jambul KuningTokohKomandanLetkol Inf. Ronald Michael Komando Distrik Militer 1807/Sorong Selatan (disingkat Kodim 1807/Sorsel) merupakan s...
Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...
Championnat d'Italie masculin de rink hockey Généralités Sport Rink hockey Création 1922 Organisateur(s) Lega Nazionale Hockey (LNH) Périodicité Annuelle Lieu(x) Italie Site web officiel Serie A1 Palmarès Tenant du titre Amatori Lodi (2018) Plus titré(s) Hockey Novara (32) Pour la compétition en cours voir : Championnat d'Italie de rink hockey 2016-2017 modifier Le Championnat d'Italie de rink hockey masculin est un championnat professionnel annuel qui oppose les meill...
Book by Euclides van Alexandrië Euclid postulated that visual rays proceed from the eyes onto objects, and that the different visual properties of the objects were determined by how the visual rays struck them. Here the red square is an actual object, while the yellow plane shows how the object is perceived. 1573 edition in Italian Optics (Greek: Ὀπτικά) is a work on the geometry of vision written by the Greek mathematician Euclid around 300 BC. The earliest surviving manuscript of Op...
Non-metropolitan and borough in EnglandBorough of FarehamNon-metropolitan and boroughFareham town centreFareham shown within HampshireSovereign state United KingdomConstituent country EnglandRegionSouth East EnglandNon-metropolitan countyHampshireStatusNon-metropolitan districtAdmin HQFarehamIncorporated1 April 1974Government • TypeNon-metropolitan district council • BodyFareham Borough Council • LeadershipLeader & Cabinet (Conservative) • ...
العلاقات الغينية النيوزيلندية غينيا نيوزيلندا غينيا نيوزيلندا تعديل مصدري - تعديل العلاقات الغينية النيوزيلندية هي العلاقات الثنائية التي تجمع بين غينيا ونيوزيلندا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ...