Карл Фрідріх Гаусс народився 30 квітня1777 р. у Брауншвейгу — одному з німецьких князівств, які на той час ще не були об'єднані в єдину централізовану державу. Батько Карла спочатку працював слюсарем, а згодом став садівником, суміщаючи це заняття з обов'язками рахівника в торговельній конторі якогось купця. Він був людиною суворою, навіть грубою. Мати Карла була дочкою каменяра; від природи вона була жінкою розумною, розважливою, доброю і веселою. Карл був її єдиною дитиною, і вона безмежно та щиро любила його. Син відповідав їй такою самою гарячою любов'ю. Від матері він успадкував розважливість і м'яку вдачу.
Читати і писати Карл навчився сам: йому досить було знати лише кілька букв, підказаних матір'ю, щоб цілком оволодіти технікою читання. Вже в ранньому дитинстві у хлопчика виявились особливі здібності до математики. Пізніше він сам жартома говорив: «Я навчився рахувати раніше, ніж розмовляти». Розповідають про такий випадок. Якось до батька Карла зібралися товариші по роботі, щоб розподілити зароблені за тиждень гроші. Тут же був і трирічний Карл. Коли батько закінчив розрахунки, які він проводив уголос, щоб усі чули їх, і оголосив результат, Карл вигукнув: «Татку, ти помилився!» Присутні були вражені заявою малої дитини, але батько підрахував усе спочатку. Коли він назвав нову цифру (а раніше він справді зробив помилку), Карл радісно вигукнув: «Тепер правильно!»
Освіта
У 1784 році Карла віддали до народної школи. Перші два роки навчання він нічим не відзначався серед товаришів, його виняткові здібності до арифметики виявилися у третьому класі. Якось учитель дав учням досить складне завдання з арифметики: відшукати суму деякої кількості натуральних послідовних чисел. Учитель вважав, що учні досить довго шукатимуть відповідь. Але через кілька хвилин Карл розв'язав задачу. Коли вчитель проглянув розв'язання, то побачив, що малий Гаус винайшов спосіб скороченого знаходження суми членів арифметичної прогресії. Щасливий випадок звів Гаусса з першим у навчанні учнем цієї самої школи — Бартельсом; вони потоваришували, бо обидва були закохані в математику. За порадою товариша Карл почав вивчати твори великих математиків, ознайомився з теорією бінома, властивостями деяких рядів тощо.
Після чотирирічного навчання в школі Гаусс перейшов до гімназії відразу в другий клас. Тут, у гімназії, яскраво виявились інші його здібності — з дивовижною швидкістю і успішністю він оволодів стародавніми мовами — грецькою і латинською. Талановитого юнака представили герцогу Брауншвейгському, який надалі піклувався про його виховання.
По закінченні гімназії Гаусс у 1792 р. вступив до так званої Каролінської колегії. Тут він продовжував успішно вивчати стародавні мови, а разом з тим систематично і поглиблено студіював математичні дисципліни. На цей період припадає його ознайомлення з творами таких видатних математиків, як Леонард Ейлер, Жозеф-Луї Лагранж і особливо Ісаак Ньютон. Епохальний твір Ньютона «Математичні начала натуральної філософії» справив на Гаусса глибоке враження і запалив у ньому той невгасимий потяг до математичних досліджень, який тривав усе його життя.
Геттінгенський університет
З 1795 р. Гаусс — студент Геттінгенського університету. Він охоче відвідує лекції з філософії і математики. В цей час він починає свої математичні дослідження. На цей ранній період його творчої діяльності (йому було всього 18 років) припадають такі відкриття й праці: у 1795 р. він винайшов так званий «Метод найменших квадратів»; у 1796 р. розв'язав класичну задачу про поділ кола, з якої випливала побудова правильного 17-кутника, і написав велику й важливу працю «Арифметичні дослідження», яка була надрукована у 1801 р.
Як відомо, ще за часів Евкліда (III ст. до н. е.) задача про поділ кола була предметом досліджень багатьох учених, причому ще тоді було доведено, що за допомогою циркуля і лінійки можна побудувати правильні многокутники, число сторін яких дорівнює: 3·2n, 4·2n, 5·2n, 15·2n, , де n — будь-яке натуральне число. В 1796 році Гаусс довів можливість побудови за допомогою циркуля і лінійки правильного 17-кутника. Більш того, він розв'язав проблему побудови правильних многокутників до кінця і знайшов критерій можливості побудови правильного n-кутника за допомогою циркуля і лінійки: якщо n — просте число, то воно повинне бути вигляду (числа Ферма). Цим відкриттям Гаус дуже дорожив і заповідав зобразити на своїй могилі правильний 17-кутник, вписаний у коло.
З 1796 року Гаусс веде короткий щоденник своїх відкриттів. Багато що він, подібно до Ньютона, не публікував, хоча це були результати виняткової важливості (еліптичні функції, неевклідова геометрія тощо). Своїм друзям він пояснював, що публікує тільки ті результати, якими задоволений і вважає завершеними. Багато відкладених або покинутих ним ідей пізніше воскресли в працях Абеля, Якобі, Коші, Лобачевського і інших. Кватерніони він теж відкрив за 30 років до Гамільтона (назвавши їх «мутаціями»).
Всі численні опубліковані праці Гаусса містять значні результати, сирих і прохідних[уточнити] робіт не було жодної.
У 1798 закінчений шедевр «Арифметичні дослідження» (лат.Disquisitiones Arithmeticae), надрукований тільки в 1801 році. У цій праці детально викладається теорія порівнянь у сучасних (введених ним) позначеннях, розв'язуються порівняння довільного порядку, глибоко досліджуються квадратичні форми, комплексні корені з одиниці використовуються для побудови правильних n-кутників, викладені властивості квадратичних лишків, наведене доведення квадратичного закону взаємності тощо. Гаусс любив говорити, що математика — цариця наук, а теорія чисел — цариця математики.
Повернення у Брауншвейг
У 1798 році Гаусс повернувся до Брауншвейгу і жив там до 1807 року. Герцог продовжував опікати молодого генія. Він сплатив друк його докторської дисертації (1799) і подарував непогану стипендію. У своїй докторській Гаусс вперше довів основну теорему алгебри. До Гаусса було багато спроб це довести, найближче до мети підійшов Д'Аламбер. Гаусс неодноразово повертався до цієї теореми і дав 4 різних доведення її.
Після 1801 року Гаусс, не пориваючи з теорією чисел, розширив круг своїх інтересів, включивши в нього і природничі науки. Каталізатором послужило відкриття малої планети Церера (1801), незабаром після спостережень втраченої. 24-річний Гаусс виконав (за декілька годин) складні обчислення за новим, відкритим ним же методом, і вказав місце, де шукати утікачку; там вона і була незабаром виявлена, до загального захоплення.
Слава Гаусса стає загальноєвропейською. Багато наукових товариств Європи обирають Гаусса своїм членом, герцог збільшує допомогу, а інтерес Гаусса до астрономії ще більш зростає.
У 1805 Гаусс одружився з Йоганною Остгоф. У них було троє дітей.
1807 наполеонівські війська займають Геттінген. Всі громадяни обкладаються контрибуцією, зокрема величезну суму — 2000 франків — потрібно заплатити Гауссу. Генріх Ольберс і П'єр-Симон Лаплас тут же приходять йому на допомогу, але Гаусс відхилив їхні гроші; тоді невідомий з Франкфурта прислав йому 1000 гульденів, і цей дар довелося прийняти. Тільки багато пізніше дізналися, що невідомим був курфюрстМайнцький, друг Гете.
1809 року вийшов новий шедевр, «Теорія руху небесних тіл». Викладена канонічна теорія врахування збурень орбіт.
Якраз в четверту роковину весілля вмирає Йоганна, незабаром після народження третьої дитини. У Німеччині розруха і анархія. Це найважчі роки для Гаусса.
1810 року знов одружився, з Минною Вальдек, подругою Йоганни. Число дітей Гаусса незабаром збільшується до шести.
1815 року великий математик публікує перше строге доведення основної теореми алгебри. 1821 у зв'язку з роботами з геодезії Гаусс починає історичний цикл робіт з теорії поверхонь. У науку входить «кривина Гаусса». Покладений початок диференціальної геометрії. Саме результати Гаусса надихнули Рімана на його класичну дисертацію про «ріманову геометрію».
Підсумком досліджень Гаусса була робота «Дослідження щодо кривих поверхонь» (1822). У ній вільно використовуються загальні криволінійні координати на поверхні. Гаусс далеко розвинув метод конформного відображення, яке в картографії зберігає кути (але спотворює відстані); воно застосовується також в аеро/гідродинамиці і електростатиці.
1825 відкриває Гауссові комплексні цілі числа, будує для них теорію подільності і порівнянь. Успішно застосовує їх для розв'язання рівнянь високих ступенів.
1831 вмирає друга дружина, у Гаусса починається важке безсоння. У Геттінген приїжджає запрошений за ініціативою Гаусса 27-річний талановитий фізик Вільгельм Вебер, з яким Гаусс познайомився в 1828 році, в гостях у Гумбольдта. Обидва ентузіасти науки здружилися, незважаючи на різницю у віці, і починають цикл досліджень електромагнетизму.
1832 виходить «Теорія біквадратичних обчислень». За допомогою тих же цілих комплексних Гауссових чисел доводяться важливі арифметичні теореми не тільки для комплексних, але і для дійсних чисел. Тут же він приводить геометричну інтерпретацію комплексних чисел, яка з цієї миті стає загальноприйнятою.
1833 Гаусс винаходить електричний телеграф і (разом з Вебером) будує його діючу модель.
У 1837 Вебера звільняють за відмову принести присягу новому королю Ганновера. Гаусс знов залишився наодинці.
У 1839 62-річний Гаусс почав вивчати російську мову і в листах до Петербурзької академії просив прислати йому російські журнали і книги, зокрема «Капітанську дочку» Пушкіна. Припускають, що це пов'язано з роботами Лобачевського. У 1842 році за рекомендацією Гаусса Лобачевський обирається іноземним членом-кореспондентом Геттінгенської академії наук.
Останні роки життя
16 червня 1849 р. наукова громадськість світу відзначила 50-річний ювілей творчої діяльності «короля математиків». Усі наукові установи, товариства різних країн світу вважали за свій обов'язок сердечно привітати великого математика і висловити йому почуття високої поваги. У цей час Гаусс написав свою останню працю «Матеріали до теорії алгебраїчних рівнянь». Довгі роки напруженої праці давалися взнаки. Гаусс почав помітно старіти, швидко стомлюватись. У 1851 р. великих страждань завдавали йому безсоння, задишка і кашель. До цього він майже не хворів і за все своє життя тільки двічі вживав ліки. Але тепер, коли друзі запросили до нього лікаря, який установив хворобу серця і ряд інших змін в організмі, Гаусс почав лікуватись, часто робив прогулянки на свіжому повітрі. Здоров'я його ніби поліпшилось. Але 23 лютого 1855 р. великого математика не стало. 26 лютого тіло перенесли в обсерваторію, а звідти студенти університету супроводили його на кладовище.
Дослідження Гаусса
Характерними рисами досліджень Гаусса є надзвичайна їх різнобічність і органічний зв'язок у них між теоретичною і прикладною математикою. Праці Гаусса мали великий вплив на весь подальший розвиток вищої алгебри, теорії чисел, диференціальної геометрії, класичної теорії електрики і магнетизму, геодезії, теоретичної астрономії. У багатьох галузях математики Гаусс активно сприяв підвищенню вимог до логічної чіткості доведень. «Арифметичні дослідження» — перший великий твір Гаусса, присвячений окремим питанням теорії чисел і вищої алгебри. Постановка і розробка цих питань Гауссом визначили подальший розвиток цих дисциплін. Гаусс докладно розвинув тут теорію квадратичних лишків, уперше довів квадратичний закон взаємності — одну з центральних теорем теорії чисел. У цьому творі він по новому докладно розробив теорію квадратичних форм, яку раніше побудував Лагранж, виклав теорію поділу кола, яка багато в чому була прообразом теорії Галуа. Гаусс розробив загальні методи розв'язання рівнянь виду хn−1=0, а також встановив зв'язок між цими рівняннями і побудовою правильних многокутників, а саме: знайшов усі такі значення n, для яких. правильний n-кутник можна побудувати циркулем і лінійкою, зокрема розв'язав у радикалах рівняння х17−1=0 і побудував правильний 17-кутник за допомогою циркуля і лінійки. Це було першим після старогрецьких геометрів значним кроком уперед у цьому питанні. Одночасно Гаусс склав величезні таблиці простих чисел, квадратичних лишків і нелишків, значень усіх дробів виду від р = 1 до р = 1000 у вигляді десяткових дробів, доводячи обчислення до повного періоду (що іноді потребувало обчислення кількох сотень десяткових знаків).
К. Гаусс довів, що за допомогою циркуля та лінійки можна побудувати такий правильний n-кутник, число сторін якого виражається формулою , де n — просте, r — довільне ціле число або нуль. Якщо r=0, то n=3; r=1, то n=5, r=2, то n=17.
Побудови трикутника і п'ятикутника були відомі ще давнім грекам, але Гаусс першим здійснив побудову правильного 17-кутника.
Дослідження Гаусса про поділ кола мали велике значення не лише для розв'язання цієї складної задачі. Мабуть, ще важливішим було те, що тут він заклав основи загальної теорії так званих алгебраїчних рівнянь, де коефіцієнти рівняння — комплексні числа.
Дуже важливе значення має доведена Гауссом у 1799 р. основна теорема алгебри про існування кореня алгебраїчного рівняння. На основі цієї теореми доведено таку властивість рівнянь: «Алгебраїчне рівняння має стільки коренів дійсних чи комплексних, скільки одиниць у показнику його степеня». За працю, в якій доведено ці теореми, Гаусс дістав звання приват-доцента.
У першій частині праці «Арифметичні дослідження» Гаусс глибоко проаналізував питання про так звані «квадратичні лишки» і вперше довів важливу теорему з теорії чисел, яку він назвав «золотою теоремою» про «квадратичний закон взаємності». Можна без перебільшень сказати, що теорія чисел, як наука, почала своє справжнє існування саме з досліджень Гаусса. «Арифметичні дослідження» Гаусса в математичній науці створили цілу епоху, а Гаусс був визнаний найвизначнішим математиком світу.
В алгебрі Гаусса цікавила насамперед основна теорема. До неї він не раз повертався і дав понад шість різних її доведень. Усі вони були опубліковані в працях ученого у 1808—1817. У цих працях були дані вказівки відносно кубічних і біквадратичних лишків. Теореми про біквадратичні лишки розглядаються в працях 1825—1831. Ці праці значно розширили теорію чисел завдяки введенню так званих цілих Гауссових чисел, тобто чисел виду а + bi, де а і b — цілі числа. У зв'язку з астрономічними обчисленнями, що ґрунтуються на розкладанні інтегралів відповідних диференціальних рівнянь у нескінченні ряди. Гаусс дослідив питання про збіжність нескінченних рядів, які він пов'язав з вивченням т. зв. гіпергеометричного ряду («Про гіпергеометричний ряд», 1812). Головне значення цього ряду полягає в тому, що він містить як окремі випадки багато з відомих трансцендентних функцій, що мають широке застосування. Ці дослідження Гауса разом з працями Коші і Абеля, які ґрунтуються на дослідженнях Гаусса, сприяли значному розвитку загальної теорії рядів.
Хоча Гаусс плідно працював у різних галузях науки, але він сам часто говорив: «Я весь відданий математиці». Математику він вважав царицею наук, а арифметику — царицею математики. В обчисленнях у думці йому не було рівних. Він знав напам'ять перші десяткові цифри багатьох логарифмів і користувався ними при наближених обчисленнях у думці. Розв'язуючи складні задачі, він помилявся дуже рідко, цифри писав чітко. Останні десяткові знаки перевіряв, не покладаючись на таблиці. Відкриття Гаусса не зробили такого перевороту, як, наприклад, відкриття Архімеда і Ньютона, але через їх глибину, різносторонність, розкриття нових, невідомих до того законів природи в галузі фізики, геодезії, математики сучасники вважали Гаусса найкращим математиком світу. На медалі, виготовленій у 1855 р. на його честь, вигравірувано напис: «Король математиків».
Внесок у галузі астрономії
У 1807 р. йому було надано звання екстраординарного, а пізніше й ординарного професора Геттінгенського університету. В той же час його було призначено директором Геттінгенської обсерваторії. В галузі астрономії Гаусс працював близько 20 років. У 1801 р. італійський астроном Джузеппе Піацці відкрив між орбітами Марса і Юпітера маленьку планету, яку він назвав Церерою. Спостерігав він цю планету протягом 40 днів, але Церера швидко наближалася до Сонця і зникла в його яскравих променях. Намагання Піацці відшукати її знову виявилися марними. Гаусс зацікавився цим явищем і, вивчивши матеріали спостережень Піацці, установив, що для визначення орбіти Церери досить трьох її спостережень. Після чого треба було розв'язати рівняння 8-го степеня, з чим Гаусс блискуче впорався: орбіта планети була обчислена і сама Церера знайдена. Таким самим способом Гаусс обчислив орбіту іншої малої планети — Паллади. У 1810 р. французький астрономічний інститут за розв'язання задачі про рух Паллади присудив йому золоту медаль. У цей період учений написав і свою фундаментальну працю «Теорія руху небесних тіл, які обертаються навколо Сонця по конічних перерізах» (1809 р.).
Внесок у галузі геометрії
Гаусс цікавився і геометрією. Окремі питання, як, наприклад, найважливіша проблема геометрії — проблема V постулату Евкліда — привертали його особливу увагу. У своїх міркуваннях він ішов шляхами, схожими на ті, які проробив Лобачевський, але не опублікував жодної сторінки. У листі до математика Бесселя Гаусс писав: «Певне, я ще не скоро зможу обробити свої широкі дослідження з цього приводу так, щоб їх можна було опублікувати. Можливо, навіть, що я не зважуся на це протягом усього мого життя, тому що боюсь крику беотійців, який піднімається, коли я висловлюю свої погляди».
Гаусс ознайомився з результатами досліджень Лобачевського за невеликою брошурою «Геометричні дослідження з теорії паралельних ліній», написаною німецькою мовою і виданою в 1840 р. Він зацікавився цією працею і в свої 62 роки вирішив вивчити російську мову, щоб мати можливість читати твори Лобачевського в оригіналі. У листах до своїх друзів Гаусс з великою похвалою говорив про досягнення Лобачевського. Він писав, що праця Лобачевського містить основи тієї геометрії, яка могла б бути і була б цілком послідовною, якби геометрія Евкліда не була правильною. Він писав також, що вже 54 роки (з 1792 р.) має такі самі переконання. Самому Лобачевському Гаусс власноручно написав листа, в якому повідомив російського вченого, що його обрали членом-кореспондентом Геттінгенського математичного вченого товариства.
Внесок у галузі фізики
1830—1840 роки Гаусс присвятив теоретичній фізиці. Його дослідження в цій галузі значною мірою були результатом тісного спілкування і спільної наукової роботи з Вільгельмом Вебером. Разом з Вебером Гаусс створив абсолютну систему електромагнітних одиниць і сконструював у 1833 перший в Німеччині електромагнітний телеграф. Йому належить створення загальної теорії магнетизму, основ теорії потенціалу і багато ін. Отже, важко вказати таку галузь теоретичної чи прикладної математики, в яку б Гаусс не вніс істотного вкладу.
Через надзвичайно велику вимогливість до себе багато досліджень визначного математика залишилося за життя його неопублікованими (нариси, незакінчені праці, листування з друзями). Цю наукову спадщину Гаусса дуже ретельно опрацьовували в Геттінгенському вченому товаристві. В результаті було видано 11 томів творів Гаусса. Дуже цікавими із спадщини вченого є його щоденник і дослідження з неевклідової геометрії й теорії еліптичних функцій. Зокрема, з опублікованих матеріалів видно, що Гаусс прийшов до думки про можливість існування поряд з евклідовою геометрією неевклідової в 1818 році. Проте побоювання, що ідеї неевклідової геометрії не зрозуміють у математичному світі, і, можливо, недостатнє усвідомлення їх наукової важливості були причиною того, що Гаусс їх далі не розробляв і нічого за життя з цих питань не опублікував. Коли опублікував неевклідову геометрію М. І. Лобачевський, Гаусс поставився до цього з великою увагою і запропонував обрати Лобачевського членом-кореспондентом Геттінгенського вченого товариства, але власної оцінки великому відкриттю Лобачевського по суті не дав.
В архівах Гаусса знайдено матеріали із своєрідною теорією еліптичних функцій. Проте заслуга в її розробці й опублікуванні належить Карлу Якобі і Нільсу Абелю. Слід зазначити, що вже сучасники Гаусса розуміли його велич, про що свідчить напис на медалі, викарбуваній на честь Гаусса, — «Король математиків». У 1880 в Брауншвейгу Гауссу поставили бронзову статую. У 1827 р. Гаусс опублікував велику працю «Загальні дослідження про криві поверхні», зміст якої стосується диференціальної геометрії.
Значні відкриття належать Гауссу і в галузі фізики. Він дослідив і встановив ряд нових законів у теорії рідин, теорії магнетизму тощо. Наслідком важливих розробок були такі праці: «Про один важливий закон механіки» (1820), «Загальні початки теорії рівноваги рідин» (1832), «Загальна теорія земного магнетизму» (1838).
У 1832 р. Гаусс опублікував важливу статтю «Про абсолютне вимірювання магнітних величин». Він і сконструював прилад для вимірювання магнітних величин (магнітометр), виконав перше обчислення положення південного магнітного полюса Землі, яке дало дуже мале відхилення від справжнього положення. Гаусс винайшов електромагнітний спосіб зв'язку (1834).
Внесок у галузі геодезії
Не менш успішно він працював і в галузі геодезії. У 1836 р. Гауссу запропонували провести геодезичні вимірювання території Ганноверського королівства. Після проведення підготовчих робіт учений особисто розпочав вимірювання. Працював він над цим 14 років. Він виготовив новий вимірювальний прилад — геліотроп, що діяв за допомогою сонячних променів. Разом з тим практика вимірювань спонукала Гаусса до теоретичних досліджень. Наслідком їх були важливі теоретичні праці[22], які стали основою подальшого розвитку геодезії.
Робочий кабінет Гаусса
Працював Гаусс сам у невеликому робочому кабінеті; там був стіл, конторка, пофарбована у білий колір, вузенька софа і єдине крісло. Одягнутий він був завжди у теплий халат і шапочку, на вдачу спокійний і веселий. Після напруженої праці Гаусс любив відпочивати: робив прогулянки до літературного музею, читав художню літературу німецькою, англійською і російською мовами. Петербурзька академія наук першою у світі обрала Гаусса своїм членом-кореспондентом.
Гаусс був настільки піднесений відкриттям методу побудови правильного 17-кутника за допомогою циркуля та лінійки, що при житті заповів, щоб правильний сімнадцятикутник викарбували на його могилі. Скульптор відмовився це зробити, стверджуючи, що побудова буде настільки складною, що результат не можна буде відрізнити від кола.[23] Але пам'ятник Гауссу, збудований у Брауншвейзі, встановлено на сімнадцятикутній плиті.[24]
↑Гаусс К. Ф. Избранные геодезические сочинения. Под общей ред. С. Г. Судакова. Т.1. Способ наименьших квадратов. Под ред., с введ. Г. В. Багратуни. Пер. с лат. и нем. Н. Ф. Булаевского. — М.: Издательство геодезической литературы, 1957.
↑Архівована копія. Архів оригіналу за 19 травня 2012. Процитовано 12 липня 2012.{{cite web}}: Обслуговування CS1: Сторінки з текстом «archived copy» як значення параметру title (посилання)
↑Архівована копія. Архів оригіналу за 14 травня 2012. Процитовано 12 липня 2012.{{cite web}}: Обслуговування CS1: Сторінки з текстом «archived copy» як значення параметру title (посилання)
Yoruba ArchitectureTop: Osun-Osogbo Sacred Grove a World Heritage Site in Osogbo, Nigeria; Middle: Post-Colonial Yoruba-inspired architecture, Natural History Museum, Obafemi Awolowo University, Ife, Nigeria; Bottom: Interior of the old palace of the Deji of Akure with a low incline stair leading to an elevated platform.Years activec. ? AD - Present Architecture of the Yoruba people Yoruba architecture describes the architectural styles of the Yoruba people of West Africa, dating back to...
Guru Gobind SinghLukisan Guru Gobind Singh Nama lainTenth Nanak[1]Informasi pribadiLahirGobind Rai22 Desember 1666Patna Sahib (kini India)Meninggal7 Oktober 1708(1708-10-07) (umur 41)Hazur Sahib Nanded (kini India)AgamaSikhismePasanganMata Jito, Mata Sundari dan Mata Sahib Devan[2]AnakAjit SinghJujhar SinghZorawar SinghFateh SinghOrang tuaGuru Tegh Bahadur, Mata GujriDikenal sebagaiMendirikan Khalsa[3]Menulis Jaap Sahib, Chandi di Var, Tav-Prasad Savaiye, Zaf...
Constituency of the National Assembly of France 2nd constituency of TarninlineConstituency of the National Assembly of FranceTarn's 2nd Constituency shown within the TarnDeputyKaren ErodiLFIDepartmentTarnCantonsAlbi Nord-Est, Albi Nord-Ouest, Albi Ouest, Cadalen, Carmaux Nord, Carmaux Sud, Castelnau-de-Montmiral, Cordes-sur-Ciel, Gaillac, Graulhet, Lisle-sur-Tarn, Monestiés, Pampelonne, Rabastens, Salvagnac, Valderiès, VaourRegistered voters106,014[1] Politics of France Political pa...
North American Soccer League 1968 Competizione North American Soccer League Sport Calcio Edizione 1ª Date dal 30 marzoal 28 settembre 1968 Luogo Canada Stati Uniti Partecipanti 17 Formula Stagione regolare più play-off Risultati Vincitore Atlanta Chiefs(1º titolo) Finalista San Diego Toros Statistiche Miglior giocatore Janusz Kowalik Miglior marcatore Janusz Kowalik (30) Cronologia della competizione USA NPSL 1969 Manuale La North American Soccer League 1968 f...
Italian anarchist (1873–1910) Luigi LucheniSwiss police mugshot of Luigi Lucheni (1898)Born(1873-04-22)April 22, 1873Paris, FranceDiedOctober 19, 1910(1910-10-19) (aged 37)Geneva, SwitzerlandCause of deathSuicideResting placeZentralfriedhofVienna, Austria48°08′58″N 16°26′28″E / 48.14944°N 16.44111°E / 48.14944; 16.44111 (Burial site of Luigi Lucheni's head)NationalityItalianCriminal chargeMurder of Empress Elisabeth of AustriaCriminal pe...
Voce principale: Aurora Pro Patria 1919. Aurora Pro Patria 1919Stagione 2010-2011Sport calcio Squadra Pro Patria Allenatore Raffaele Novelli Presidente Antonio Tesoro, poi Massimo Pattoni (amministratore unico) Lega Pro Seconda Divisione4º Coppa Italia Lega ProSecondo turno StadioCarlo Speroni (4.627) Maggior numero di spettatori1 500[1] vs. Pro Vercelli (6 marzo 2011) Minor numero di spettatori900[1] vs Feralpisalò (28 novembre 2010) Media spettatori1 110 ...
2020 benefit television and livestream event Graduate Together: America Honors the High School Class of 2020GenreBenefit performance[1]Created byXQ InstituteLeBron James Family FoundationEntertainment Industry Foundation[2]Presented byLeBron JamesCountry of originUnited StatesOriginal languagesEnglishSpanishProductionExecutive producersLeBron JamesBrian GottProduction locationVirtualRunning time57 minutesProduction companiesSpringHill EntertainmentDone and Dusted[3]Ori...
American race New York City MarathonThe TCS New York City Marathon logoDateFirst Sunday in November[1]LocationNew York City, U.S.Event typeRoadDistanceMarathon26.219 miles (42.195 km)Primary sponsorTCS (since 2013)[2]Established1970, 54 years agoCourse records2:04:58 Tamirat Tola (2023)2:22:31 Margaret Okayo (2003)Official sitewww.tcsnycmarathon.org The New York City Marathon, currently branded as the TCS New York City Marathon for sponsorship reasons, is an annual marath...
European pay television channel Television channel Comedy Central ExtraLogo used since 2019CountryUnited KingdomBroadcast areaIrelandUnited KingdomNetworkComedy CentralHeadquartersLondon, EnglandProgrammingLanguage(s)EnglishPicture format576i 16:9 SDTVTimeshift serviceComedy Central Extra +1 (2009–2020)OwnershipOwnerUK & IrelandParamount UK Partnership(Paramount Networks UK & Australia/Sky Group)Sister channelsComedy Central UKHistoryLaunchedUK & Ireland1 September 2003;...
Railway station in Hamamatsu, Japan This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Kamiichiba Station – news · newspapers · books · scholar · JSTOR (June 2022) Kamiichiba Station上市場駅Kamiichiba Station in November 2009General informationLocationSakuma-cho Urakawa 2541, Tenryū-ku, Hamamatsu...
كوبيونمعلومات عامةصنف فرعي من Caribbean people (en) مقيمAmericans (en) بلد المواطنة كوبا اللغات المحكية الإسبانية[1] سُمِّي باسم كوبا البلد كوبا تقع في التقسيم الإداري كوبا بلد المنشأ كوبا صيغة التأنيث cubanes (بالكتالونية) تعديل - تعديل مصدري - تعديل ويكي بيانات علم كوبا كوبيون وهم مواطن�...
بطولة كاريوكا 1943 تفاصيل الموسم بطولة كاريوكا البلد البرازيل البطل نادي فلامينغو بطولة كاريوكا 1942 بطولة كاريوكا 1944 تعديل مصدري - تعديل بطولة كاريوكا 1943 هو موسم من بطولة كاريوكا. فاز فيه نادي فلامنغو.[1][2] نتائج الموسم مراجع ^ Futebolnacional.com.br – Championship...
Keuangan bagian dari Ekonomi Pasar uangPasar Bond · Pasar bursa efek (Ekuitas) · Devisa · Derivatif · Komoditi · Uang · Spot (tunai) · Pasar OTC · Real estat · Ekuitas swasta Pelaku pasarInvestor · Spekulan · Lembaga Investor Keuangan korporasiStruktur keuangan · Penganggaran pemodalan · Manajemen risiko keuangan · Merger dan A...
British botanist (1901–1993) Arthur Wallis ExellArthur Wallis Exell at his cottage in Blockley (1991)Born(1901-05-21)21 May 1901Birmingham, U.K.Died15 January 1993(1993-01-15) (aged 91)Cheltenham, U.K.EducationWarwickshire Queen Elizabeth Grammar School Birmingham King Edmund's SchoolEmmanuel College, CambridgeSpouseMildred Alice HaydonParent(s)William Wallis Exell (father) and Jessie Clara Holmes (mother)RelativesMaurice Herbert Exell and Ernest George Exell (brothers)Scientific caree...
Valor EconômicoTypeBusiness newspaperOwner(s)Grupo GloboEditorVera BrandimarteFounded2 May 2000; 24 years ago (2000-05-02)Political alignmentEconomic liberalismLanguagePortugueseHeadquartersSão Paulo, SPCountryBrazilCirculation124,974 (2021)[1]WebsiteValor EconômicoMedia of BrazilList of newspapers Valor Econômico is the largest financial newspaper in Brazil,[2] according to the Circulation Verification Institute (IVC). It is the result of a partnership b...
G.A. Dentzel Carousel Company Création 1867 Disparition 1928 Fondateurs Gustav Dentzel Personnages clés Gustav Dentzel, William Dentzel Siège social Philadelphie, Pennsylvanie États-Unis Activité Constructeur de carrousels Produits Carrousels modifier - modifier le code - voir Wikidata La G.A. Dentzel Carousel Company, connue dans un premier temps sous le nom G.A. Dentzel, Steam and Horsepower Caroussell Builder est un ancien constructeur américain de carrousels qui était b...
2015 2028 Élections départementales de 2021 dans l'Ain 46 sièges du Conseil départemental de l'Ain les 20 et 27 juin 2021 Type d’élection Élections départementales Corps électoral et résultats Population 662 244[1] Inscrits au 1er tour 424 501 Votants au 1er tour 133 643 31,48 % 17,5 Votes exprimés au 1er tour 127 843 Votes blancs au 1er tour 4 003 Votes nuls au 1er tour 1 797 Inscrits au 2d tour 408 995 Votants au 2...
Voce principale: National Basketball Association 1999-2000. NBA Playoffs 2000Dettagli della competizioneSport Pallacanestro OrganizzatoreNBA Periodo23 aprile 2000 —19 giugno 2000 Data2000 Squadre16 VerdettiTitolo East Indiana Pacers Titolo West L.A. Lakers Campione L.A. Lakers(12º titolo) MVP delle finaliShaquille O'Neal Ultimo aggiornamento dati: 2 novembre 2016 Cronologia della competizioneed. successiva → ← ed. precedente Modifica dati...