Цей список містить наймасивніші зорі, відкриті станом на січень 2024 року.
Маса зір вимірюється у сонячних масах і є однією із найважливіших характеристик зір, бо визначає їхню подальшу еволюцію[1]. Масивні зорі еволюціонують дуже швидко порівняно із маломасивними. На останніх етапах еволюції вони перетворюються на нейтронні зорі або чорні діри, що може супроводжуватися спалахом наднової. Масивні зорі є одним із джерел важких елементів у Всесвіті, оскільки температура їх ядер достатньо висока, щоб синтезувати хімічні елементи до заліза, а під час наднових можливим стає утворення і ще важчих елементів[2].
Масивні зорі порівняно рідкісні та швидко еволюціонують, тому їх важко спостерігати. Через це вони залишаються предметом активних досліджень.
Визначення маси зір
Більшість мас, перелічених у списку, можуть бути неточними і, будучи предметом поточних досліджень, підлягають постійному перегляду. Багато мас, наведених у таблиці нижче, виведено з теорії, використовуючи складні вимірювання температури та абсолютної яскравості зір, але, зважаючи на різні фактори, точність оцінки мас зір може бути невеликою.
Маси зір, наведених у списку, визначено одним із наступних методів:
Аналіз подвійних зір.Подвійні зорі — це системи, у яких дві зірки обертаються навколо спільного центру мас. Визначивши основні параметри їх орбіти (зокрема радіальні швидкості та нахил), можна обрахувати маси зір[3]. Цей метод є найбільш точним, однак варто зазначити, що майже всі маси, наведені в таблиці нижче, були визначені непрямими методами. Наприклад, маси зір NGC 3603-A1[en][4], WR 21a[en] та WR 20a[en][5] є досить достовірними, оскільки вони є компонентами подвійних систем.
Спектроскопія — аналіз спектру світла, яке випромінює зоря. Вивчаючи лінії поглинання або випромінювання в спектрі, астрономи можуть визначати температуру, склад та інші характеристики зірки. Визначення маси за допомогою спектроскопії часто передбачає вивчення розширення або звуження певних спектральних ліній, що вказує на поверхневу гравітацію зірки, яка, своєю чергою, пов'язана з її масою[6].
Моделі еволюції — це теоретичні основи, які описують життєвий цикл зір на основі їх маси. Різні маси призводять до різних еволюційних шляхів і тривалості життя зір. Порівнюючи спостережувані властивості зорі, як-от світність, температура та вік, із теоретичними моделями, астрономи можуть оцінити її масу[7].
Ускладнення пов'язані з хмарами газу та пилу
Поблизу Сонця немає масивних зір[8] та загалом вони зустрічаються рідко[9], астрономам доводиться шукати їх дуже далеко від Землі. Усі перелічені зорі розташовані на відстані багатьох тисяч світлових років, що ускладнює вимірювання. Крім цього, вони оточені хмарами газу, створеними надзвичайно потужними зоряними вітрами[10]. Навколишній газ значно ускладнює оцінку хімічного складу та структури зорі. Це призводить до труднощів у розрахунку параметрів[11].
І хмари, і великі відстані ускладнюють судження про те, чим є зоря — лише одним надмасивним об'єктом чи системою кількох зір. Деякі зорі, перераховані нижче, насправді можуть бути системами двох або більше зір, які обертаються надто близько, щоб розрізнити їх за допомогою телескопів[12]. У глобальнішому масштабі статистика вказує на те, що верхня межа маси становить 100—200 M☉, тому всі оцінки маси, що перевищують цю межу, можуть бути хибними або вказувати на те, що спостережуваний об'єкт є зоряною системою.
Важливість зоряної еволюції
Еволюція зір в астрономії — зміна з часом фізичних і спостережуваних параметрів зорі через термоядерні реакції, випромінювання нею енергії та втрати маси[13]. Деякі зорі колись могли бути масивнішими, ніж вони є сьогодні. Цілком імовірно, що багато великих зір зазнали значної втрати маси (до кількох десятків мас Сонця). Можливо, ця маса була викинута супервітрами[en]: високошвидкісними зоряними вітрами, які фотосфера викидає в міжзоряний простір. Процес утворює збільшену розширену оболонку навколо зорі, яка взаємодіє з міжзоряним середовищем і насичує область елементами, важчими за водень або гелій. Розуміння формування та еволюції зір має важливе значення для розуміння еволюції Всесвіту в цілому. Вивчення зореутворення дозволяє нам розв'язувати проблеми взаємодії таких галактик, як Магелланові Хмари та Чумацький Шлях[14]. У списку також можуть бути об'єкти, які є псевдонадновими. Зараз можна спостерігати лише залишки таких зір. Маси зір-попередників, які викликали ці руйнівні події, можна оцінити за типом вибуху та вивільненою енергією.
У достатньо масивної зорі тиск назовні променевої енергії ядерного синтезу у ядрі зорі перевищує її власне гравітаційне стискання. Світність такої зорі називається межею Еддінгтона. За цією межею зоря повинна розвалитися або принаймні скинути достатньо маси для зменшення швидкості внутрішнього виробництва енергії. У теорії масивніша зоря не зможе втриматися як єдиний об'єкт через втрату маси внаслідок витоку матерії від зорі. На практиці теоретична межа Еддінгтона повинна бути скоригована для дуже яскравих зір — розраховується емпірична межа Хампфрі — Девідсона (англ.Humphreys Davidson Limit)[15].
Астрономи давно висували теорії щодо того, що відбувається, коли маса протозорі перевищує 120 сонячних мас. І хоча межа може бути збільшена для дуже молодих зір III популяції (точна межа невідома), будь-які зорі з масами понад 150—200 M☉ чинять тиск на сучасну теорію зоряної еволюції. Вивчаючи скупчення Арки, яке є найщільнішим із відомих скупчень у нашій галактиці, астрономи визначили, що в ньому відсутні зорі із масою понад 150 M☉. Одна з теорій, яка пояснює рідкісні надмасивні зорі, що перевищують цею межу Еддінгтона, наприклад у скупченні R136, це зіткнення та злиття двох масивних зір у тісній зоряній системі[16].
Список наймасивніших зір
У таблиці наведено зорі, маса яких оцінюється у понад 60 сонячних, включно із зорями скупченняАрки, OB-асоціаційЛебідь OB2 чи NGC 6357 та зоряного надскупчення R136. Наведені маси є їхніми поточними (еволюційними) масами, а не початковими (масами при формуванні).
↑ абвгдежиклмнпрстуDucati, J.R. (2002). VizieR Online Data Catalog: Catalogue of Stellar Photometry in Johnson's 11-color system (Звіт). Collection of Electronic Catalogues. Т. 2237. CDS/ADC. Bibcode:2002yCat.2237....0D. S2CID118191108.
↑ абTehrani, Katie A.; Crowther, Paul A.; Bestenlehner, Joachim M.; Littlefair, Stuart P.; Pollock, A.M.T.; Parker, Richard J.; Schnurr, Olivier (1 квітня 2019). Weighing Melnick 34: the most massive binary system known. Monthly Notices of the Royal Astronomical Society(англ.). 484 (2): 2692—2710. arXiv:1901.04769. Bibcode:2019MNRAS.484.2692T. doi:10.1093/mnras/stz147. ISSN0035-8711. S2CID119069481.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
↑ абвгCrowther, Paul A.; Schnurr, Olivier; Hirschi, Raphael; Yusof, Norhasliza; Parker, Richard J.; Goodwin, Simon P.; Kassim, Hasan Abu (21 жовтня 2010). The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M⊙ stellar mass limit. Monthly Notices of the Royal Astronomical Society(англ.). 408 (2): 731—751. arXiv:1007.3284. Bibcode:2010MNRAS.408..731C. doi:10.1111/j.1365-2966.2010.17167.x. ISSN0035-8711. S2CID53001712.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
↑Drew, J.E.; Herrero, A.; Mohr-Smith, M.; Monguió, M.; Wright, N.J.; Kupfer, T.; Napiwotzki, R. (21 жовтня 2018). Massive stars in the hinterland of the young cluster, Westerlund 2. Monthly Notices of the Royal Astronomical Society(англ.). 480 (2): 2109—2124. arXiv:1807.06486. Bibcode:2018MNRAS.480.2109D. doi:10.1093/mnras/sty1905. ISSN0035-8711. S2CID53126230.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
↑Vargas Álvarez, Carlos A.; Kobulnicky, Henry A.; Bradley, David R.; Kannappan, Sheila J.; Norris, Mark A.; Cool, Richard J.; Miller, Brendan P. (25 березня 2013). The distance to the massive galactic cluster Westerlund 2 from a spectroscopic and HST photometric study. The Astronomical Journal. 145 (5): 125. arXiv:1302.0863. Bibcode:2013AJ....145..125V. doi:10.1088/0004-6256/145/5/125. ISSN0004-6256. S2CID67769122.
↑Oskinova, L. M.; Steinke, M.; Hamann, W.-R.; Sander, A.; Todt, H.; Liermann, A. (21 грудня 2013). One of the most massive stars in the Galaxy may have formed in isolation. Monthly Notices of the Royal Astronomical Society(англ.). 436 (4): 3357—3365. arXiv:1309.7651. Bibcode:2013MNRAS.436.3357O. doi:10.1093/mnras/stt1817. ISSN0035-8711. S2CID118513968.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
↑Clementel, N.; Madura, T.I.; Kruip, C.J.H.; Paardekooper, J.-P.; Gull, T.R. (1 березня 2015). 3D radiative transfer simulations of Eta Carinae's inner colliding winds - I. Ionization structure of helium at apastron. Monthly Notices of the Royal Astronomical Society(англ.). 447 (3): 2445—2458. arXiv:1412.7569. Bibcode:2015MNRAS.447.2445C. doi:10.1093/mnras/stu2614. ISSN0035-8711. S2CID118405692.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
↑Hamaguchi, Kenji; Corcoran, Michael F.; Pittard, Julian M.; Sharma, Neetika; Takahashi, Hiromitsu; Russell, Christopher M.P. та ін. (September 2018). Non-thermal X-rays from colliding wind shock acceleration in the massive binary Eta Carinae. Nature Astronomy(англ.). 2 (9): 731—736. arXiv:1904.09219. Bibcode:2018NatAs...2..731H. doi:10.1038/s41550-018-0505-1. ISSN2397-3366. S2CID126188024.
↑ абвCrowther, Paul A.; Caballero-Nieves, S.M.; Bostroem, K.A.; Apellániz, J. Maíz; Schneider, F.R.N.; Walborn, N.R. та ін. (1 травня 2016). The R136 star cluster dissected with Hubble Space Telescope / STIS. I. Far-ultraviolet spectroscopic census and the origin of He{{sup(Sc #ii)}} λ1640 in young star clusters. Monthly Notices of the Royal Astronomical Society(англ.). 458 (1): 624—659. arXiv:1603.04994. Bibcode:2016MNRAS.458..624C. doi:10.1093/mnras/stw273. ISSN0035-8711. S2CID119131482.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
↑ абSana, H.; van Boeckel, T.; Tramper, F.; Ellerbroek, L. E.; de Koter, A.; Kaper, L. та ін. (15 березня 2013). R144 revealed as a double-lined spectroscopic binary. Monthly Notices of the Royal Astronomical Society: Letters(англ.). 432 (1): L26—L30. arXiv:1304.4591. Bibcode:2013MNRAS.432L..26S. doi:10.1093/mnrasl/slt029. ISSN1745-3933. S2CID119238483.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
↑ абвгдSchild, H.; Testor, G. (March 1992). Spectral types and UBV magnitudes of stars in the 30 Doradus complex. Astronomy and Astrophysics Supplement Series. 92: 729—748. Bibcode:1992A&AS...92..729S. ISSN0365-0138. S2CID115371295.
↑ абвUlaczyk, K.; Szymański, M.K.; Udalski, A.; Kubiak, M.; Pietrzyński, G.; Soszyński, I. та ін. (1 червня 2013). Variable Stars from the OGLE-III Shallow Survey in the Large Magellanic Cloud. Acta Astronomica. 63 (2): 159—179. arXiv:1306.4802. Bibcode:2013AcA....63..159U. ISSN0001-5237. S2CID119228254.
↑Bestenlehner, Joachim M.; Crowther, Paul A.; Broos, Patrick S.; Pollock, Andrew M T.; Townsley, Leisa K. (2022). Melnick 33Na: A very massive colliding-wind binary system in 30 Doradus. Monthly Notices of the Royal Astronomical Society. 510 (4): 6133—6149. arXiv:2112.00022. Bibcode:2022MNRAS.510.6133B. doi:10.1093/mnras/stab3521.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
↑ абSkiff, B. A. (October 2014). VizieR Online Data Catalog: Catalogue of Stellar Spectral Classifications (Skiff, 2009- ). VizieR On-Line Data Catalog: B/Mk. Originally Published in: Lowell Observatory (October 2014). 1. Bibcode:2014yCat....1.2023S. S2CID215961366.
↑ абвMcEvoy, C.M.; Dufton, P.L.; Evans, C.J.; Kalari, V.M.; Markova, N.; Simón-Díaz, S. та ін. (March 2015). The VLT-FLAMES Tarantula Survey: XIX. B-type supergiants: Atmospheric parameters and nitrogen abundances to investigate the role of binarity and the width of the main sequence⋆. Astronomy & Astrophysics. 575: A70. arXiv:1412.2705. Bibcode:2015A&A...575A..70M. doi:10.1051/0004-6361/201425202. ISSN0004-6361. S2CID39125418.
↑ абвгHøg, E.; Fabricius, C.; Makarov, V.V.; Urban, S.; Corbin, T.; Wycoff, G. та ін. (March 2000). The Tycho-2 catalogue of the 2.5 million brightest stars. Astronomy & Astrophysics. 355: L27—L30. Bibcode:2000A&A...355L..27H. ISSN0004-6361. S2CID17128864.
↑Rauw, G.; Sana, H.; Gosset, E.; Vreux, J.-M.; Jehin, E.; Parmentier, G. (August 2000). A new orbital solution for the massive binary system HD 93403. Astronomy & Astrophysics. 360: 1003—1010. Bibcode:2000A&A...360.1003R. ISSN0004-6361. S2CID13886945.
↑Liermann, Adriane; Hamann, Wolf-Rainer; Oskinova, Lidia M.; Todt, Helge (January 2011). High-mass stars in the Galactic center Quintuplet cluster. Société Royale des Sciences de Liège, Bulletin. 80: 160—164. Bibcode:2011BSRSL..80..160L. ISSN0037-9565. S2CID116895316.
↑ абвгдежиклмнпрсЦе подвійна система, але вторинний компонент набагато менш масивний, ніж первинний.
↑This unusual measurement was made by assuming the star was ejected from a three-body encounter in NGC 3603. This assumption also means that the current star is the result of a merger between two original close binary components. The mass is consistent with evolutionary mass for a star with the observed parameters.
↑ абвгдеMercer 30 — це розсіяне скупчення в туманності GAL 298.4-00.4 (Dragonfish Nebula).
↑N64 — це емісійна туманність у Великій Магеллановій Хмарі.
↑BSDL 1830 — це зоряне скупчення у Великій Магеллановій Хмарі.
↑BSDL 2527 — це зоряне скупчення у Великій Магеллановій Хмарі.
↑BSDL 2505 — це зоряне скупчення у Великій Магеллановій Хмарі.
↑DEM S10 — це регіон H II у Малій Магеллановій Хмарі.
↑Bochum 10 — це розсіяне скупчення в Туманності Кіля.
↑N135 — це емісійна туманність у Великій Магеллановій Хмарі.
↑N70 — це емісійна туманність у Великій Магеллановій Хмарі.
↑DEM L294 — це регіон Н ІІ у Великій Магеллановій Хмарі.
↑DEM S80 — це регіон H II у Малій Магеллановій Хмарі.
↑ абGKK-A144 — це асоціацій зір у Великій Магеллановій Хмарі.
↑BSDL 2242 — це зоряне скупчення у Великій Магеллановій Хмарі.